• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Algebra Linear] Sistema

[Algebra Linear] Sistema

Mensagempor fabriel » Dom Jun 02, 2013 03:44

É ai pessoal, blz? Então estou com uma duvida num exercicio aqui.
Veja o exercicio:

Determinar os valores de m para os quais o sistema descrito abaixo é possivel e determiado:

x+2y-2z-t=1
2x-2y-2z-3t=-1
2x-2y-z-5t=9
3x-y+z-mt=0

Resolvendo.
A matriz ampliada associada ao sistema é:
\begin{pmatrix}
   1 & 2 & -2 & -1 & 1  \\ 
   2 & -2 & -2 & -3 & -1  \\
   2 & -2 & -1 & -5 & 9   \\
   3 & -1 & 1 & -m & 0 
\end{pmatrix}

E fazendo umas operações elementares para resolvermos pelo metodo de Gauss chegamos nessa matriz:

\begin{pmatrix}
   1 & 2 & -2 & -1 & 1  \\ 
   0 & 1 & -\frac{1}{3} & \frac{1}{6} & \frac{1}{2}  \\
   0 & 0 & 1 & -2 & 10   \\
   0 & 0 & 0 & \frac{81}{6}-m & \frac{1}{2} 
\end{pmatrix}

Deu pra entender né?

Mas ai não consigo resolver mais, preciso achar m, mas como, esta incógnita esta me levando a outras..

Obrigado
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Algebra Linear] Sistema

Mensagempor e8group » Dom Jun 02, 2013 12:34

Considere a matriz aumentada [A|B] associada ao sistema que você postou .Para este sistema ser possível e determinado a matriz A =(a_{ij})_{4\times4} deve ser equivalente por linhas a matriz I_4(ou seja, existe um número finito de operações elementares que aplicado a A chega-se a I_4 ) ,assim , a única solução é A^{-1}B do sistema ,mas para que a matriz A seja invertível tem-se obrigatoriamente det(A) \neq 0(pois det(A^{-1} \cdot A) = det(A^{-1}) \cdot det(A) = det(I_4) = 1 \implies det(A) \neq 0 ) . Usando que em uma matriz triangular D = (d_{ij})_{m \times m}  (i,j = 1,\hdots,m) seu determinante é dado por det(D) = \prod_{k=1}^{m} d_{kk} ,temos que det(A) = 1 \cdot 1 \cdot 1 \cdot (81/6 - m)  \neq 0 ,logo m \neq 81/6 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Algebra Linear] Sistema

Mensagempor fabriel » Dom Jun 02, 2013 13:46

hummm, Obrigado. Quer dizer então que eu não poderia resolver esse problema sem os conhecimentos de determinantes e matriz inversa?
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Algebra Linear] Sistema

Mensagempor e8group » Dom Jun 02, 2013 14:10

fabriel escreveu:hummm, Obrigado. Quer dizer então que eu não poderia resolver esse problema sem os conhecimentos de determinantes e matriz inversa?
Não é necessário . Observe a última matriz que você postou ,na última linha dela tiramos que (81/9 -m)t = 1/2 para esta igualdade ser satisfeita devemos impor (81/6 - m) \neq 0 (pois,caso contrário 0 = 1/2 absurdo !) .Logo , t =\frac{\dfrac{1}{2}}{\dfrac{81}{9}-m} .Na terceira linha da matriz vamos conseguir escrever z em função de t =\frac{\dfrac{1}{2}}{\dfrac{81}{9}-m} ,disso obtemos uma solução para z .Pelo mesmo raciocínio vamos conseguir obter y e x . Você pode então concluir que fixado m \neq 81/6 o sistema será possível determinado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Algebra Linear] Sistema

Mensagempor e8group » Dom Jun 02, 2013 14:19

e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}