por guisaulo » Qui Nov 29, 2012 12:36
Seja W o subespaço de

gerado pelos vetores:

a) Mostre que os vetores

são linearmente dependentes.
Até onde cheguei:Bastaria mostrar que o determinante desses vetores deve ser igual a zero.
Porém, preciso saber quais vetores são combinação linear dentre eles para descarta-los e encontrar a base e dimensão de W.(letra b)
Para isso, fiz o escalonamento e encontrei o seguinte resultado (-2z+w, -2z-3w, z, w) sendo que z e w são variáveis livres.
Resolvendo a equação obtive

Neste caso, não consegui desenvolver a equação para encontrar quais dos vetores pode ser escrito com combinação linear dos outros.
Pode ser que errei alguma conta, mas não sei como fazer o exercício a partir desse ponto.
-
guisaulo
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Nov 27, 2012 21:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: TI
- Andamento: cursando
por MarceloFantini » Sex Nov 30, 2012 00:13
Ao invés do determinante, eu calcularia

, onde

são constantes. Como o conjunto tem que ser linearmente dependente, isto significa que pelo menos uma dessas constantes é não-nula, logo o conjunto é linearmente dependente.
Não existe um vetor particular que é combinação linear dos outros. Retire um e veja o que acontece com o conjunto restante. Julgando pelas coordenadas, eu diria que

é combinação linear das outras, pelo menos é o que mais parece.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Vetores LI e LD - Subespaço Gerado
por Cicero ferreira » Sex Mar 14, 2014 18:13
- 0 Respostas
- 2046 Exibições
- Última mensagem por Cicero ferreira

Sex Mar 14, 2014 18:13
Álgebra I para Licenciatura
-
- [Subespaço Vetorial] Subespaço envolvendo matrizes
por hyge » Qua Mai 02, 2018 17:04
- 2 Respostas
- 10982 Exibições
- Última mensagem por adauto martins

Dom Mai 06, 2018 12:28
Álgebra Linear
-
- [Subespaço Vetorial] Verificar que é o conjunto é subespaço
por anderson_wallace » Seg Dez 30, 2013 17:56
- 3 Respostas
- 4679 Exibições
- Última mensagem por Renato_RJ

Ter Dez 31, 2013 14:00
Álgebra Linear
-
- [VETORES]Alguém me ajuda com vetores?
por LAZAROTTI » Seg Set 17, 2012 00:49
- 2 Respostas
- 7360 Exibições
- Última mensagem por young_jedi

Seg Set 17, 2012 11:28
Geometria Analítica
-
- [Vetores] Módulo e Versor de vetores
por LAZAROTTI » Sáb Set 22, 2012 22:42
- 1 Respostas
- 2988 Exibições
- Última mensagem por young_jedi

Sáb Set 22, 2012 22:50
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.