• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema liner

Sistema liner

Mensagempor rafaeldouglas » Dom Out 28, 2012 22:12

Olá pessoal eu sou novo aqui e estou com dúvida nesta questão :

Considere o sistema linear Ax = b, onde

1 2 0 3
A = 0 0 0 0 e b = (b1; b2; b3)T
2 4 0 1

(a) Sob que condições de b, o sistema tem solução?
(b) Encontre uma base para o espaço nulo de A?
(c) Encontre a solução geral para Ax = b (quando existir uma)
(d) Encontre uma base para o espaco coluna (espaco formado pelas
colunas de A).

Se tiver algum material explicando como se faz o passo a passo eu agradeço tbm !
Grato e espero respostas !?

Ps :Este T que fica (b1; b2; b3)T significa a Transposta
rafaeldouglas
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 28, 2012 21:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo de Informação(TI)
Andamento: cursando

Re: Sistema liner

Mensagempor MarceloFantini » Dom Out 28, 2012 22:43

Rafael Douglas, por favor atente para as regras do fórum, em especial a regra número 2. Além disso, se a matriz for como escreveu, o enunciado está errado. Você tem uma matriz 3 \times 4 multiplicada por uma matriz, à direita, que é 3 \times 1. Logo, se o sistema é Ax =b, então provavelmente a matriz A é 4 \times 3.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Sistema liner

Mensagempor rafaeldouglas » Dom Out 28, 2012 23:05

Po eu tentei seguir a regra 2 escrever o formulario mas não consegui ( desistir ) mas tem como me dá um auxilo nesta questão (só fornecendo como se resolve) ou ?
Editado pela última vez por rafaeldouglas em Dom Out 28, 2012 23:30, em um total de 1 vez.
rafaeldouglas
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Out 28, 2012 21:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo de Informação(TI)
Andamento: cursando

Re: Sistema liner

Mensagempor MarceloFantini » Dom Out 28, 2012 23:14

Faltaram apenas os comandos
Código: Selecionar todos
[tex][/tex]
antes e depois do se código. Você continuou não observando o que eu disse: a matriz que você escreveu, novamente, é 3 \times 4. Isto significa que ela tem três linhas e quatro colunas, e para multiplicar por outra matriz á direita, esta deve ter quatro linhas. A matriz b que você escreveu tem apenas três, portanto não é possível fazer a multiplicação.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.