por Damile » Qui Mai 10, 2012 14:55
Verifique se V= R³ = {(x,y,z), x,y,z pertence R} é uma espaço vetorial com as operações usuais.
ALGUEM PODE ME AJUDAR A SOLUCIONAR ISTO?
aguardo retorno!
Att,
Dami
-
Damile
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Mai 10, 2012 14:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia de produção
- Andamento: cursando
por MarceloFantini » Sáb Mai 12, 2012 14:40
Damile, para responder a isto é necessário que você sabe dizer quais são os pré-requesitos para um conjunto ser um espaço vetorial. Você sabe quais são as operações usuais de

?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Damile » Dom Mai 13, 2012 16:55
Tenho sim, mas não consegui me dar bem com eles ainda! Estou com dificuldade...Eu até acho que sei fazer, mas começo a responder e depois trava...
-
Damile
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Mai 10, 2012 14:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia de produção
- Andamento: cursando
por MarceloFantini » Dom Mai 13, 2012 17:05
Digite quais são os axiomas que um conjunto precisa satisfazer para ser um espaço vetorial e, em seguida, suas tentativas.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por nietzsche » Dom Mai 13, 2012 21:12
Você pode provar que é um subespaço vetorial ao invés de decorar todas propriedades de espaço vetorial e provar uma a uma.
-
nietzsche
- Usuário Parceiro

-
- Mensagens: 99
- Registrado em: Qua Jan 12, 2011 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Álgebra Linear - Espaços Vetoriais
por lincolnluizcorrea » Qua Mai 01, 2013 13:05
- 0 Respostas
- 1104 Exibições
- Última mensagem por lincolnluizcorrea

Qua Mai 01, 2013 13:05
Álgebra Linear
-
- Espaços vetoriais
por alzenir agapito » Qui Jul 21, 2011 17:41
- 2 Respostas
- 2232 Exibições
- Última mensagem por alzenir agapito

Sex Jul 22, 2011 21:51
Álgebra
-
- Espaços vetoriais
por crsjcarlos » Seg Jun 10, 2013 19:14
- 0 Respostas
- 1215 Exibições
- Última mensagem por crsjcarlos

Seg Jun 10, 2013 19:14
Álgebra Linear
-
- Espaços Vetoriais e Espaço Euclidiano.
por 380625 » Dom Ago 14, 2011 16:06
- 1 Respostas
- 1456 Exibições
- Última mensagem por LuizAquino

Dom Ago 14, 2011 16:25
Geometria Analítica
-
- Algebra Linear: Igualdade de Subespaços vetoriais
por leandro_aur » Ter Nov 01, 2011 05:40
- 1 Respostas
- 3542 Exibições
- Última mensagem por MarceloFantini

Ter Nov 01, 2011 15:21
Álgebra
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.