por Cleyson007 » Qua Nov 09, 2011 08:56
Bom dia a todos!
Determinar os autovalores de

e seus respectivos autovetores associados.
Se puder detalhar o máximo a resolução ajudará bastante.
Até logo.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por MarceloFantini » Qua Nov 09, 2011 17:33
Não há segredo. Os passos são:
1) Resolva a equação

, onde

é a identidade.
2) Encontre as raízes da equação.
Estes são os autovalores.
3) Resolva o sistema

e encontre a forma dos vetores.
Estes são os autovetores.
Neste caso, teremos

Os autovalores serão

e

. Agora resolva os sistemas

e

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Algebra Linear] autovalores e autovetores
por Angel31 » Sex Out 26, 2012 10:25
- 3 Respostas
- 3013 Exibições
- Última mensagem por MarceloFantini

Sáb Out 27, 2012 08:17
Álgebra Linear
-
- [Algebra Linear] autovalores e autovetores
por vualas » Seg Nov 26, 2012 19:29
- 1 Respostas
- 3601 Exibições
- Última mensagem por Russman

Seg Nov 26, 2012 21:00
Álgebra Linear
-
- [autovalores/autovetores] Encontrar autovetores e autovalore
por amigao » Sáb Nov 23, 2013 15:42
- 1 Respostas
- 1989 Exibições
- Última mensagem por e8group

Sáb Nov 23, 2013 19:13
Álgebra Linear
-
- autovalores e autovetores
por natan matos » Ter Nov 30, 2010 23:05
- 0 Respostas
- 1895 Exibições
- Última mensagem por natan matos

Ter Nov 30, 2010 23:05
Matrizes e Determinantes
-
- Autovetores e autovalores em equações quadráticas
por frogman » Dom Dez 10, 2017 15:08
- 0 Respostas
- 1845 Exibições
- Última mensagem por frogman

Dom Dez 10, 2017 15:08
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.