• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Isolando a taxa

Isolando a taxa

Mensagempor lcsimao » Qua Ago 03, 2011 14:40

Bom dia a todos,

Gosto muito de matemática e sempre tento conseguir fazer coisas novas com ajuda desta

ferramenta. Hávia visitado este site outras vezes para fazer consultas diversas, desta

vez resolvi me cadastrar pois não achei solução para a questão que vou propor. Sei

que o site pede para demostrarmos que tentamos resolver as questões para discuti-las,

em vez de termos só as respostas. Tentei de várias formas resolver o problema abaixo,

mas vou postar somente a última, que de todas a que tentei foi a mais "lúcida".

Segue:

A questão é isolar a variável "i" da equação \[c(\frac{i}{1-(1+i)^{-n}})=pmt\]


Fiz desta forma:

\[c=pmt-pmt\frac{1}{(1+i)^n}\]


\[c=pmt-\frac{pmt}{(1+i)^n}\]


\[c=\frac{pmt(1+i)^n-pmt}{(1+i)^n}\]


e travei aqui...

\[\frac {c(1+i)^n}{pmt}=-1+(1+i)^n\]


tentei fazer logarítmos e tentei encontrar através de raízes, mas sem sucesso.

Agradeço pela ajuda.
lcsimao
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Ago 03, 2011 09:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Mecatrônica
Andamento: cursando

Re: Isolando a taxa

Mensagempor lcsimao » Dom Ago 07, 2011 03:53

Pessoal, refiz da forma correta. Espero que agora saia uma ajuda.

Muio grato,

Tenho que isolar "i"
no esquema abaixo:

\[c(\frac{i}{1-(1+i)^{-n}})=pmt\]

Fiz desta forma:

\[c=pmt-pmt\frac{1}{(1+i)^n}\]


\[c=pmt-\frac{pmt}{(1+i)^n}\]


\[c=\frac{pmt(1+i)^n-pmt}{(1+i)^n}\]


e travei aqui...

\[\frac {c(1+i)^n}{pmt}=-1+(1+i)^n\]
lcsimao
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Ago 03, 2011 09:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Mecatrônica
Andamento: cursando

Re: Isolando a taxa

Mensagempor lcsimao » Qui Ago 11, 2011 08:36

Bom dia a Todos!!

Ninguém?? Uma só tentativa??

Por favor, há alguém que consiga??
lcsimao
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Ago 03, 2011 09:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Mecatrônica
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.