por leo_30_rj » Sáb Ago 14, 2010 17:17
PESSOAL, BOA TARDE
ESSE PROBLEMA PARECE FÁCIL, MAS....
QUESTÃO) A METADE DE UM CAPITAL C FOI APLICADO A JUROS COMPOSTOS COM TAXA DE 20% A.M. SIMULTANEAMENTE, A OUTRA METADE FOI APLICADA A JUROS SIMPLES COM TAXA MENSAL DE i%. AO FINAL DE 2 MESES, OS MONTANTES A JUROS SIMPLES E JUROS COMPOSTOS FORAM SOMADOS E SEU VALOR CORRESPONDIA AO CAPITAL TOTAL C, ACRESCIDO DE 50%. QTOS. SÃO OS DIVISORES INTEIROS POSITIVOS DE i?
BOM, EU USEI AS FORMULAS DE JUROS SIMPLES E COMPOSTO E MONTEI AS EQUAÇÕES....TUDO BLZ!
A TAXA I% QUE ENCONTREI FOI 14% - MINHA RESPOSTA: 4, POIS OS DIVISORES DE 14 SÃO: 1, 2, 7 E 14.
SÓ QUE A RESPOSTA FINAL CORRETA É 6!!!!
POR FAVOR, SE PUDEREM AJUDAR EU AGRADEÇO.
OBRIGADO
-
leo_30_rj
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Jul 26, 2010 03:13
- Formação Escolar: GRADUAÇÃO
- Área/Curso: outros
- Andamento: cursando
por alexandre32100 » Sáb Ago 14, 2010 18:05
-
alexandre32100
-
por Douglasm » Seg Ago 16, 2010 13:59
Alexandre, acho que você esqueceu de considerar que metade do capital é acrescido dos respectivos juros e de considerar o capital inicial no caso dos juros simples. Note só:
![\frac{C}{2}.(1 + 0,20)^2 + [\frac{C}{2} + 2.\frac{C}{2}.i] = 1,50 C \;\therefore \frac{C}{2}.(1 + 0,20)^2 + [\frac{C}{2} + 2.\frac{C}{2}.i] = 1,50 C \;\therefore](/latexrender/pictures/410ab333f9eb36e0ef5890b325f30018.png)


Sendo assim, os divisores são 1, 2, 4, 7, 14 e 28.
Até a próxima.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Descobrindo os casais
por Cleyson007 » Dom Fev 07, 2010 14:18
- 1 Respostas
- 1422 Exibições
- Última mensagem por Elcioschin

Seg Fev 08, 2010 22:37
Desafios Médios
-
- Integral Descobrindo valores.
por Maykids » Qua Jun 29, 2011 12:33
- 1 Respostas
- 1582 Exibições
- Última mensagem por LuizAquino

Qua Jun 29, 2011 16:22
Cálculo: Limites, Derivadas e Integrais
-
- Limites descobrindo Valores
por Maykids » Sáb Jul 09, 2011 01:19
- 1 Respostas
- 1008 Exibições
- Última mensagem por LuizAquino

Ter Jul 12, 2011 11:36
Cálculo: Limites, Derivadas e Integrais
-
- equação de segundo grau( descobrindo as raizes)
por arturmedeiros2010 » Qui Fev 13, 2014 15:34
- 1 Respostas
- 1250 Exibições
- Última mensagem por Russman

Sex Fev 14, 2014 00:15
Equações
-
- Descobrindo a Expressão Algébrica olhando apenas o gráfico
por Ricardogferreira » Seg Jul 23, 2012 21:19
- 12 Respostas
- 12154 Exibições
- Última mensagem por Ricardogferreira

Ter Jul 31, 2012 20:25
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.