• Anúncio Global
    Respostas
    Exibições
    Última mensagem

DESCOBRINDO OS DIVISORES DA TAXA i%

DESCOBRINDO OS DIVISORES DA TAXA i%

Mensagempor leo_30_rj » Sáb Ago 14, 2010 17:17

PESSOAL, BOA TARDE

ESSE PROBLEMA PARECE FÁCIL, MAS....

QUESTÃO) A METADE DE UM CAPITAL C FOI APLICADO A JUROS COMPOSTOS COM TAXA DE 20% A.M. SIMULTANEAMENTE, A OUTRA METADE FOI APLICADA A JUROS SIMPLES COM TAXA MENSAL DE i%. AO FINAL DE 2 MESES, OS MONTANTES A JUROS SIMPLES E JUROS COMPOSTOS FORAM SOMADOS E SEU VALOR CORRESPONDIA AO CAPITAL TOTAL C, ACRESCIDO DE 50%. QTOS. SÃO OS DIVISORES INTEIROS POSITIVOS DE i?

BOM, EU USEI AS FORMULAS DE JUROS SIMPLES E COMPOSTO E MONTEI AS EQUAÇÕES....TUDO BLZ!

A TAXA I% QUE ENCONTREI FOI 14% - MINHA RESPOSTA: 4, POIS OS DIVISORES DE 14 SÃO: 1, 2, 7 E 14.

SÓ QUE A RESPOSTA FINAL CORRETA É 6!!!!

POR FAVOR, SE PUDEREM AJUDAR EU AGRADEÇO.

OBRIGADO
leo_30_rj
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Jul 26, 2010 03:13
Formação Escolar: GRADUAÇÃO
Área/Curso: outros
Andamento: cursando

Re: DESCOBRINDO OS DIVISORES DA TAXA i%

Mensagempor alexandre32100 » Sáb Ago 14, 2010 18:05

[C\cdot (1+i)^{t}-C]+Cit=\dfrac{C}{2}
2(1,44C-C+2Ci)=C
0,88\not C+2 \not Ci=\not C
0,88+2i=1
2i=0,12
i=0,06 ou 6\%
Os divisores de 6 são 1,2\text{ e }3.
Resposta: 3.

O que está errado?
alexandre32100
 

Re: DESCOBRINDO OS DIVISORES DA TAXA i%

Mensagempor Douglasm » Seg Ago 16, 2010 13:59

Alexandre, acho que você esqueceu de considerar que metade do capital é acrescido dos respectivos juros e de considerar o capital inicial no caso dos juros simples. Note só:

\frac{C}{2}.(1 + 0,20)^2 + [\frac{C}{2} + 2.\frac{C}{2}.i] = 1,50 C \;\therefore

0,72 C + 0,50 C + i C = 1,50 C \;\therefore

i = 0,28 = 28\%

Sendo assim, os divisores são 1, 2, 4, 7, 14 e 28.

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59