• Anúncio Global
    Respostas
    Exibições
    Última mensagem

JUROS COMPOSTOS

JUROS COMPOSTOS

Mensagempor jakemendes » Qui Ago 16, 2012 13:03

[QUESTAO FGV]

Um capital C é aplicado a juros compostos a taxa de 2% ao mes. Tres meses depois, um outro capital igual a C é aplicado tambem a juros compostos, porem a taxa de 3% ao mes. Durante quanto tempo o primeiro capital dever ficar aplicado para dar um montante igual ao do segundo capital? Voce pode deixar indicado o resultado.

Minha resolução, que não chegou a lugar nenhum:

JUROS COMPOSTOS: M = C (A+I)^t

M = C . 1,02^t (primeiro capital) [t em meses]
M = C . 1,03^t (segundo capital)

1,02^t = 1,03^t

Logx[base 1,02] = t
Logy[base 1,03] = t

Logx[base 1,02] = Logy[base 1,03]

Daí em diante eu não sei como fazer, não sei também se eu deveria ter feito assim :S
Avatar do usuário
jakemendes
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Ago 16, 2012 12:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: vestibular
Andamento: cursando

Re: JUROS COMPOSTOS

Mensagempor e8group » Qui Ago 16, 2012 15:25

Boa tarde , perceba que o tempo do segundo capital aplicado é t-3 ,pois o mesmo do primeiro estar 3 meses já sendo aplicado enquanto que o segundo só começa a parti do terceiro mês .Sendo assim ,

Capital 1 = > C(1,02)^t


Capital 2 => C(1,03)^{t-3}


Como C_1 = C_ 2 \implies  C(1,02)^t = C(1,03)^{t-3}  \implies (1,02)^t = (1,03)^{t-3} .Agora aplicando logaritmo pela esquerda e direita obtemos ,


t[log(1,02)] = (t-3)[log(1,03)] \implies t[log(1,02)] = t[log(1,03)] - 3[log(1,03)] \implies 3[log(1,03)] = t[log(1,03) - log(1,02) ]  \implies t = \frac{3[log(1,03)]} {log\left(\frac{1,03}{1,02}\right)} .


É isso não conheço algum método analítico por isso paramos por aqui .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}