• Anúncio Global
    Respostas
    Exibições
    Última mensagem

taxas efetivas, equivalentes.

taxas efetivas, equivalentes.

Mensagempor Alessandra Cezario » Qua Fev 29, 2012 17:40

PArece simples, mas gostaria de entender:
1.QUal a taxa mensal efetiva que corresponde a 36% a.a com capitalização semestral? Bom, eu penso que 0.36/2(dois semestres)=0,18, uso a fórmula 1+ia=1+im^n, resulta 3.92, sendo que a resposta é 2,80a.m
2.Qual a taxa semestral efetiva que corresponde a 2% ao bimestre capitalizada ao trimestre?
seria 1% ao mês? jogo na fórmula e resulta 6,10, mas a resposta é 6,09
3.Qual a taxa mensal equivalente a 6% ao semestre?
Não seria 1% a.m?Por que dá 0,98%
Às vezes parece bobo, mas eu queria entender exato, porque calculamos de cabeça. mas a conta no lápis dá números aproximados, sem querer abusar, se vocês puderem me auxiliarem, ficarei mais tranquila!Obrigada desde já! :)
Alessandra Cezario
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Qui Mar 31, 2011 19:25
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em Português
Andamento: formado

Re: taxas efetivas, equivalentes.

Mensagempor Fabiano Vieira » Sáb Abr 21, 2012 18:19

Alessandra Cezario escreveu:1.QUal a taxa mensal efetiva que corresponde a 36% a.a com capitalização semestral?

36% a.a com capitalização semestral - -> 1.18^2 = 39.2

Note que o exercício pede a taxa mensal que seja equivalente a 39,2. Então 2,80/100 + 1 = 1,028

1,028^12 = 39,2.

Obs: 3,92 está incorreto, pois 1,18^2 = 1,3924 - 1*100 = 39,24

Alessandra Cezario escreveu:2.Qual a taxa semestral efetiva que corresponde a 2% ao bimestre capitalizada ao trimestre?
seria 1% ao mês? jogo na fórmula e resulta 6,10, mas a resposta é 6,09


Nesse caso, a resposta do exercício está correta. 1,03^2 = 1,0609 - 1* 100 = 6,09.
Alessandra Cezario escreveu:3.

Qual a taxa mensal equivalente a 6% ao semestre?
Não seria 1% a.m?Por que dá 0,98%


Se a resposta é 0,98. 1% é a taxa proporcional e 0,98 é a taxa equivalente . Assim, 1,0098^6 = 1.060 - 1*100 = 6
Fabiano Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Abr 16, 2012 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.