• Anúncio Global
    Respostas
    Exibições
    Última mensagem

JUROS - CAPITALIZAÇÃO SIMPLES

JUROS - CAPITALIZAÇÃO SIMPLES

Mensagempor Claudinei » Dom Out 02, 2011 21:17

ENUNCIADO: DOIS CAPITAIS COLOCADOS, O PRIMEIRO, A 4% a.a., DURANTE 8 MESES, E O SEGUNDO, A 3% a.a., DURANTE 9 MESES, RENDEM JUROS IGUAIS. DETERMINAR ESSES CAPITAIS, SABENDO QUE A SUA DIFERENÇA É DE R$ 12,50.

Pv, Pv1 e Pv2 = VALORES PRESENTES
I = JUROS
i = TAXA DE JUROS
n=NÚMERO DE PERÍODOS
I = Pv.i.n/m

TENTATIVA:
Pv1 - Pv2 = 12,50 => Pv1= Pv2 + 12,50

Pv1* 0,04 / 12 * 8 = Pv2 * 0,03/12 * 9

ENTÃO:
RESOLVENDO A SEGUNDA

Pv1 = Pv2 * 0,8427

SUBSTITUINDO NA PRIMEIRA

Pv2 * 0,8427 = Pv2 + 12,50

RESPOSTA Pv2 = R$ 6,78

ONDE ESTÁ O ERRO !?!?!
Claudinei
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Out 02, 2011 20:51
Formação Escolar: GRADUAÇÃO
Área/Curso: FILOSOFIA
Andamento: formado

Re: JUROS - CAPITALIZAÇÃO SIMPLES

Mensagempor mausim » Qui Out 27, 2011 11:46

Você fez baseando-se em juros simples?

Vou dar uma volta muito grande, mas espero alcançar o objetivo. Mas vou pelos juros compostos, espero que não lhe cause problemas com isto.

Vamos escrever a sentença, enquanto lemos o enunciado:

{j}_{1} = {j}_{2}

que é o mesmo que

{M}_{1} - {C}_{1} = {M}_{2} - {C}_{2}

Aplicando

{C}_{1} {(1+{0,04 \over 12})^8} - {C}_{1} = ({C}_{1} + 12,50){(1+{0,03 \over 12})^9} - ({C}_{1} + 12,50)

Melhorando essa confusão

{{C}_{1} \over {{C}_{1}+12,50}} = {{0,022726 \over 0,02698}} = 0,842344

{C}_{1} = 0,842344 \times ({C}_{1}+12,50)= 0,842344 \times {C}_{1} + 10,5293

{C}_{1} - 0,842344 {C}_{1} = 10,5293

{C}_{1} (1 - 0,842344) = 10,5293

{C}_{1} = 66,78643

Como {C}_{2} = {C}_{1}+12,50,

{C}_{2} = 79,28643

Tirando a prova através de

M = C (1+i)^n


{C}_{1} a 4% teremos

M = 66,78643 (1+{0,04 \over 12})^8 = 68,58833

Os juros, no caso de {C}_{1} serão

M - {C}_{1} = 1,8018

Agora o {C}_{2} a 4% teremos

M = 79,28643 (1+{0,03 \over 12})^9 = 81,0883

Os juros, no caso de {C}_{2} serão

M - {C}_{2} = 1,8018

Ficam assim os juros iguais (1,8018) e os capitais C1 e C2 com a diferença de 12,50.


.
mausim
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Ter Out 25, 2011 10:27
Formação Escolar: SUPLETIVO
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D