Dúvidas pendentes de estatística ou outras áreas (física, química etc), aguardando bacharéis dispostos e habilitados a ajudar.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por tatimamedes » Sex Mar 01, 2013 00:57
Estou com dúvida no seguinte exercício:
Uma caixa contém 20 canetas iguais, das quais 7 são defeituosas, e outra caixa contém 12, das quais 4 são defeituosas. Uma caneta é retirada aleatoriamente de cada caixa. As probabilidades de que ambas não sejam defeituosas e de que uma seja perfeita e a outra não são respectivamente de:
A. 88,33% e 45,00%
B. 43,33% e 45,00%
C. 43,33% e 55,00%
D. 23,33% e 45,00%
E. 23,33% e 55,00%
Justifique sua resposta:
Resposta:
Caixa A= 20 Canetas, dessas 7 são defeituosas
Caixa B= 12 Canetas, dessas 4 são defeituosas
P[canetas boas] =
Probabilidade [canetas boas caixa A E canetas boas caixa B] =
P(canetas boas em A) = = 13/20=0,65 ou 65%
P(canetas boas em B)= =8/12=0,66666666ou 66,67%
Probabilidade [canetas boas caixa A E canetas boas caixa B]=0,65*0,66666666=0,43333333*100=43,33%
Resp. 1: As probabilidades de que ambas não sejam defeituosas são de 43,33%
2- Probabilidade [peça fabricada E peça defeituosa] = ??
Qual a probabilidade de que uma caneta escolhida ao acaso seja perfeita e a outra não?
Obs. Com a resolução da 1ª parte sei que a resposta para esse exercício será a B ou a C.
-
tatimamedes
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Mar 01, 2013 00:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração de Empresas
- Andamento: cursando
por young_jedi » Sex Mar 01, 2013 22:57
vamos separar em dois casos
primeiro: se a caneta defeituosa for retirada da caixa de 20 canetas e caneta boa da caixa de 12
a probabilidade deste evento é
agora o contrario se a caneta boa for retirada da caixa de 20 canetas e a caneta defeituosa da caixa de 12
a probabilidade deste evento é

somando os dois

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por tatimamedes » Sex Mar 01, 2013 23:11
Entendi. Sua explicação foi muito boa.
Eu resolvi assim:
1- P[canetas boas] =
Probabilidade [canetas boas caixa A E canetas boas caixa B] =
P(canetas boas em A) = = 13/20=0,65 ou 65%
P(canetas boas em B)= =8/12=0,66666666ou 66,67%
Probabilidade [canetas boas caixa A E canetas boas caixa B]=0,65*0,66666666=0,43333333*100=43,33%
Resp. 1: As probabilidades de que ambas não sejam defeituosas são de 43,33%
2- Probabilidade [peça fabricada E peça defeituosa] =
Probabilidade [canetas defeituosas caixa A E canetas boas caixa A]+ Probabilidade [canetas defeituosas caixa B E canetas boas caixa B]=
7/20*13/20=0,35*0,65=0,2275 +
4/12*8/12=0,333333*0,6666666=0,222222 = 0,44972222*100=44,972222=~45%
Resp. 2: As probabilidades de que uma seja perfeita e a outra não são de 45%
Será que o meu raciocínio está errado?
-
tatimamedes
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Mar 01, 2013 00:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração de Empresas
- Andamento: cursando
por young_jedi » Sex Mar 01, 2013 23:22
a primeira parte esta certo
agora a segunda não entendi porque voce multiplicou as probabilidade de se retirar uma boa da caixa A pela se retirar uma ruim da Caixa A
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por anabatista » Qua Abr 10, 2013 01:42
Vamos passo a passo...
primeiro determinamos os eventos
A= caneta da caixa A sem defeito P(A)= 7/20
a= caneta da caixa A com defeito P(a)=13/20
B= caneta da caixa B sem defeito P(B)= 4/12
b= caneta da caixa B com defeito P(b) = 8/12
A primeira parte está correta!
QUando se fala em probabilidade de ocorrer X e Y, ao mesmo tempo, utiliza-se

que é dada pelo produto das probabilidades.
Logo a probabilidade de ambas não serem defeituosas é

= 43,33%
Parte 2:
Quando se pede para calcular a probabilidade de uma ser defeituosa e outra boa, não se determina de qual caixa vem logo,
a defeituosa pode vir da caixa A OU da caixa B. Quando se usa o termo OU, utiliza-se

que é dada pela soma das probabilidades.
Então teriamos as seguintes probabilidades,
ter defeito na caneta da caixa A E não ter na B

OU (+) não ter defeito na A e ter na B


= 45%
Resposta Letra B
-
anabatista
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Seg Abr 08, 2013 23:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Estatistica
- Andamento: cursando
por tatimamedes » Qua Abr 10, 2013 15:43
Muito obrigada pela ajuda.
-
tatimamedes
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Sex Mar 01, 2013 00:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração de Empresas
- Andamento: cursando
Voltar para Dúvidas Pendentes (aguardando novos colaboradores)
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Probabilidades - cálculo probabilidades e condicionada
por carlosmartins » Dom Set 21, 2014 18:58
- 0 Respostas
- 2841 Exibições
- Última mensagem por carlosmartins

Dom Set 21, 2014 18:58
Probabilidade
-
- probabilidades
por edwilsoncrep » Qui Mar 04, 2010 19:28
- 3 Respostas
- 3088 Exibições
- Última mensagem por edwilsoncrep

Qui Mar 04, 2010 19:49
Estatística
-
- Probabilidades!
por pferraz » Qui Out 27, 2011 22:53
- 3 Respostas
- 6805 Exibições
- Última mensagem por Russman

Qua Dez 23, 2015 22:04
Estatística
-
- Probabilidades
por matematicaead » Qua Nov 16, 2011 13:53
- 1 Respostas
- 2099 Exibições
- Última mensagem por Neperiano

Qua Nov 23, 2011 16:32
Estatística
-
- probabilidades
por cris_leite » Seg Jan 23, 2012 21:17
- 9 Respostas
- 5139 Exibições
- Última mensagem por fraol

Dom Jan 29, 2012 12:41
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.