por acalves » Ter Abr 03, 2012 22:32
Boa noite,não consigo entender qdo tem no enunciado "na menor quantidade possivel" ou "na maior quantidade possível.
Veja.
Uma barra de madeira maciça,com a forma de um paralelepípedo reto retângulo ,tem as seguintes dimensões:48 cm,18cm e 12cm.Para produzir calços para uma estrutura, essa barra dever ser cortada pelo carpinteiro em cubos idênticos, na menor quantidade possível,sem que reste qualquer pedaço da barra.Desse modo, o número de cubos cortados será igual a: resposta 48
att
-
acalves
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Seg Abr 02, 2012 23:31
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Guill » Qui Abr 05, 2012 15:25
Deve-se cortar a barra em cubos menores com o menor número de cubos possível. Isso quer dizer que precisamos cortar essa barra de dimensões 48 cm,18cm e 12cm em cubos com as maiores dimensões possível. Se o lado desse cubo tiver o maior divisor que esses números possuem em comum, teremos o resultado apropriado:
MDC (48,18,12) = 6
Uma vez que esse cubos possuem lado 6, termos um volume de 6³ em cada cubinho. O número de cubos é dado pela razão dos volumes:


cubos
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por acalves » Sex Abr 06, 2012 22:38
ok, então toda vez que no enunciado tiver com o menor número possível eu acho mdc com o maior número possível eu acho mmc,posso guardar assim?
obrigada.
-
acalves
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Seg Abr 02, 2012 23:31
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Guill » Dom Abr 08, 2012 14:12
acalves escreveu:ok, então toda vez que no enunciado tiver com o menor número possível eu acho mdc com o maior número possível eu acho mmc,posso guardar assim?
obrigada.
Não. Esse raciocínio só funciona no caso de menor número possível, onde se usa o MDC. Não existe caso de maior número possível porque, não importa o comprimento dos lados do cubo que você escolher, sempre poderá ser reduzido.
Usa-se o MMC, por exemplo, em casos de periodicidade:
Três máquinas recebem manutenção. A primeira recebe manutenção de 3 em 3 dias, a segunda de 4 em quatro dias e a terceira de 5 em 5 dias. Se as máquinas recebem manutenção hoje, todas juntas, quantos dias levará para que elas recebam manutenção juntas ?
Nesse caso, a primeira recebe em dias múltiplos de 3 a segunda de 4 e a terceira em múltiplos de 5. Logo, um multiplo comum às máquinas é um dia em que as três recebem manutenção. Como o menor múltiplo é o próximo dia:
MMC(3,4,5) = 60
Daqui a 60 dias elas voltarão a receber manutenção juntas.
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Conversão de Unidades
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [integral] Volumes
por dehcalegari » Qui Ago 29, 2013 17:27
- 4 Respostas
- 2433 Exibições
- Última mensagem por dehcalegari

Sex Ago 30, 2013 11:49
Cálculo: Limites, Derivadas e Integrais
-
- Questões Integral Definida, Áreas e Volumes.
por walterdavid » Qui Out 01, 2009 21:21
- 2 Respostas
- 7313 Exibições
- Última mensagem por walterdavid

Ter Out 06, 2009 20:33
Cálculo: Limites, Derivadas e Integrais
-
- Volumes de cilindros. Alguém me ajude por favor!
por AlanCalvete » Sáb Jul 09, 2011 14:31
- 0 Respostas
- 1732 Exibições
- Última mensagem por AlanCalvete

Sáb Jul 09, 2011 14:31
Geometria Espacial
-
- [Calculo de volumes] Dedução volume do cone
por ronaldo9nine » Qua Nov 20, 2013 10:31
- 1 Respostas
- 3491 Exibições
- Última mensagem por e8group

Qua Nov 20, 2013 20:06
Cálculo: Limites, Derivadas e Integrais
-
- [volume do cubo] Soma dos volumes das infinitas caixas
por Priscilamoraes307 » Sex Ago 10, 2012 23:14
- 2 Respostas
- 2034 Exibições
- Última mensagem por Russman

Sáb Ago 11, 2012 16:08
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.