por acalves » Ter Abr 03, 2012 22:32
Boa noite,não consigo entender qdo tem no enunciado "na menor quantidade possivel" ou "na maior quantidade possível.
Veja.
Uma barra de madeira maciça,com a forma de um paralelepípedo reto retângulo ,tem as seguintes dimensões:48 cm,18cm e 12cm.Para produzir calços para uma estrutura, essa barra dever ser cortada pelo carpinteiro em cubos idênticos, na menor quantidade possível,sem que reste qualquer pedaço da barra.Desse modo, o número de cubos cortados será igual a: resposta 48
att
-
acalves
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Seg Abr 02, 2012 23:31
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Guill » Qui Abr 05, 2012 15:25
Deve-se cortar a barra em cubos menores com o menor número de cubos possível. Isso quer dizer que precisamos cortar essa barra de dimensões 48 cm,18cm e 12cm em cubos com as maiores dimensões possível. Se o lado desse cubo tiver o maior divisor que esses números possuem em comum, teremos o resultado apropriado:
MDC (48,18,12) = 6
Uma vez que esse cubos possuem lado 6, termos um volume de 6³ em cada cubinho. O número de cubos é dado pela razão dos volumes:


cubos
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por acalves » Sex Abr 06, 2012 22:38
ok, então toda vez que no enunciado tiver com o menor número possível eu acho mdc com o maior número possível eu acho mmc,posso guardar assim?
obrigada.
-
acalves
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Seg Abr 02, 2012 23:31
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Guill » Dom Abr 08, 2012 14:12
acalves escreveu:ok, então toda vez que no enunciado tiver com o menor número possível eu acho mdc com o maior número possível eu acho mmc,posso guardar assim?
obrigada.
Não. Esse raciocínio só funciona no caso de menor número possível, onde se usa o MDC. Não existe caso de maior número possível porque, não importa o comprimento dos lados do cubo que você escolher, sempre poderá ser reduzido.
Usa-se o MMC, por exemplo, em casos de periodicidade:
Três máquinas recebem manutenção. A primeira recebe manutenção de 3 em 3 dias, a segunda de 4 em quatro dias e a terceira de 5 em 5 dias. Se as máquinas recebem manutenção hoje, todas juntas, quantos dias levará para que elas recebam manutenção juntas ?
Nesse caso, a primeira recebe em dias múltiplos de 3 a segunda de 4 e a terceira em múltiplos de 5. Logo, um multiplo comum às máquinas é um dia em que as três recebem manutenção. Como o menor múltiplo é o próximo dia:
MMC(3,4,5) = 60
Daqui a 60 dias elas voltarão a receber manutenção juntas.
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Conversão de Unidades
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [integral] Volumes
por dehcalegari » Qui Ago 29, 2013 17:27
- 4 Respostas
- 2434 Exibições
- Última mensagem por dehcalegari

Sex Ago 30, 2013 11:49
Cálculo: Limites, Derivadas e Integrais
-
- Questões Integral Definida, Áreas e Volumes.
por walterdavid » Qui Out 01, 2009 21:21
- 2 Respostas
- 7313 Exibições
- Última mensagem por walterdavid

Ter Out 06, 2009 20:33
Cálculo: Limites, Derivadas e Integrais
-
- Volumes de cilindros. Alguém me ajude por favor!
por AlanCalvete » Sáb Jul 09, 2011 14:31
- 0 Respostas
- 1732 Exibições
- Última mensagem por AlanCalvete

Sáb Jul 09, 2011 14:31
Geometria Espacial
-
- [Calculo de volumes] Dedução volume do cone
por ronaldo9nine » Qua Nov 20, 2013 10:31
- 1 Respostas
- 3493 Exibições
- Última mensagem por e8group

Qua Nov 20, 2013 20:06
Cálculo: Limites, Derivadas e Integrais
-
- [volume do cubo] Soma dos volumes das infinitas caixas
por Priscilamoraes307 » Sex Ago 10, 2012 23:14
- 2 Respostas
- 2035 Exibições
- Última mensagem por Russman

Sáb Ago 11, 2012 16:08
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.