por anfran1 » Sex Jun 29, 2012 13:27
Dado um numero real x, o piso

de x é definido como o maior número inteiro

que é menor ou igual a x.
Por exemplo

;

;

.
Qual o valor da soma
![\dagger1\dagger +\dagger\sqrt[2]{2}\dagger + \dagger\sqrt[2]{3}\dagger+...+\dagger\sqrt[2]{200}\dagger \dagger1\dagger +\dagger\sqrt[2]{2}\dagger + \dagger\sqrt[2]{3}\dagger+...+\dagger\sqrt[2]{200}\dagger](/latexrender/pictures/76e66fd46dfd45020d68284f7fc07f0f.png)
?
No começo eu fui somando os valores facilmente mas então percebi que perderia muito tempo já que esta questão caiu nas olímpiadas aqui da minha região. Como faço para resolvê-la?
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Seg Jul 02, 2012 23:49
Perceba que sempre teremos que

será sempre

até chegarmos em

. Então, por exemplo

. Tente aplicar o mesmo raciocínio para outros intervalos. Existe uma forma de generalizar para os intervalos, procure.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por anfran1 » Dom Jul 08, 2012 10:52
MarceloFantini escreveu:Perceba que sempre teremos que

será sempre

até chegarmos em

. Então, por exemplo

. Tente aplicar o mesmo raciocínio para outros intervalos. Existe uma forma de generalizar para os intervalos, procure.
Já entendi. Por exemplo quando chegarmos ao piso de
![\sqrt[2]{25} \sqrt[2]{25}](/latexrender/pictures/e4a5a0d745e039d5327ad2983233661c.png)
basta irmos somando 5 até chegarmos no piso da
![\sqrt[2]{36} \sqrt[2]{36}](/latexrender/pictures/12b047b03092656399d446e78440b0e3.png)
e assim por diante.
Quanto à generalização tentei fazer por conta própria e percebi que de
![\sqrt[2]{16} \sqrt[2]{16}](/latexrender/pictures/191ffcc471002d4e0ffc1c4a28bb655c.png)
até
![\sqrt[2]{24} \sqrt[2]{24}](/latexrender/pictures/f3bc6e2a65dc93c241bc110261384a02.png)
há 9 números(chamemos esse 9 de

).
Entre
![\sqrt[2]{25} \sqrt[2]{25}](/latexrender/pictures/e4a5a0d745e039d5327ad2983233661c.png)
até
![\sqrt[2]{35} \sqrt[2]{35}](/latexrender/pictures/ee7a1b2b31c4e46cd16dd30e0467554e.png)
há 11 números (seja

, então

.
Entre
![\sqrt[2]{36} \sqrt[2]{36}](/latexrender/pictures/12b047b03092656399d446e78440b0e3.png)
até
![\sqrt[2]{48} \sqrt[2]{48}](/latexrender/pictures/e8f81210c3e7fee9992263cf368c5a14.png)
há 13 números (

). Então minha generalização é a seguinte :

Está correto?
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4255 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
-
- Próximo Número...?
por Molina » Sáb Jun 21, 2008 17:44
- 8 Respostas
- 8626 Exibições
- Última mensagem por Rafael Dias

Sáb Ago 30, 2008 22:31
Desafios Fáceis
-
- número de elementos
por sinuca147 » Qui Mai 14, 2009 04:43
- 4 Respostas
- 5999 Exibições
- Última mensagem por sinuca147

Dom Mai 17, 2009 17:14
Conjuntos
-
- apóstolos no número
por lieberth » Qui Jun 18, 2009 18:42
- 2 Respostas
- 1665 Exibições
- Última mensagem por Molina

Sex Jun 19, 2009 08:41
Álgebra Elementar
-
- apóstolos no número
por lieberth » Sex Jun 19, 2009 19:19
- 0 Respostas
- 1061 Exibições
- Última mensagem por lieberth

Sex Jun 19, 2009 19:19
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.