• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Circulos Tangentes a Duas Retas

Circulos Tangentes a Duas Retas

Mensagempor nakagumahissao » Qua Abr 04, 2012 20:13

Na figura abaixo temos uma sequência de círculos tangentes a duas retas. O raio do primeiro círculo é 1 e o raio do segundo é r < 1. Cada círculo tangencia externamente o círculo anterior. Determine a soma dos raios dos n primeiros círculos.

http://learning.freeiz.com/?p=808

Não consegui resolver esta questão de jeito nenhum. Poderiam me auxiliar por favor?
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Circulos Tangentes a Duas Retas

Mensagempor Guill » Ter Mai 01, 2012 14:57

Consideremos {r}_{1};{r}_{2};...;{r}_{n} os n primeiros raios das circunferências, onde {r}_{1} = 1. Se ligarmos o vértice ao centro do outro círculo, teremos uma reta que corta todos os centros das cricunferências (Semelhança de Triângulos).


Se descermos uma reta do centro da primeira circunferência perpendicularmente até o ''chão'', essa reta terá comprimento 1. Façamos o mesmo com todas as circunferências, e tracemos, a partir do centro anterior, uma reta perpendicular ao raio da anterior (o raio que encosta no chão), fechando triângulos retângulos. Pelo teorêma de Pitágoras (para dois raios hipotéticos):

({r}_{x}+{r}_{x-1})^2 = ({r}_{x}-{r}_{x-1})^2 + b^2

b^2=4.{r}_{x}.{r}_{x-1}

b=2.\sqrt[]{{r}_{x}.{r}_{x-1}}



Agora é simples. Basta calcular a soma pelo Teorema de Pitágoras no triângulo maior:

\left({r}_{1}+{r}_{2}+...+{r}_{n} \right)^2=({r}_{1})^2+\left(2.\sum_{p=1}^{n} \sqrt[]{{r}_{p}.{r}_{p-1}} \right) ^2

[Unparseable or potentially dangerous latex formula. Error 6 ]
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Circulos Tangentes a Duas Retas

Mensagempor nakagumahissao » Ter Mai 01, 2012 16:40

Muito Obrigado. Assim que eu puder estarei verificando.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: