• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sequencia

Sequencia

Mensagempor Amparo » Dom Mar 09, 2008 16:26

Seja a Considere a seqüência an = n^5 + n^3 + n / n^3 - 1


(a) Determine os quatro primeiros termos da seqüência {an}? ;
Obs.: N = { 1, 2, 3, ... }
(b) Discuta, justificando todos os passos, se a seqüência converge ou não ;
Amparo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mar 09, 2008 10:19
Área/Curso: Estudante
Andamento: cursando

Re: Sequencia

Mensagempor admin » Qui Mar 13, 2008 12:53

Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Sequencia

Mensagempor Cah » Seg Jan 31, 2011 13:21

Por favor, me ajudem estou com dificuldades na resolução de um problema.Para estudarmos a taxa de crescimento de termos sucessivos, construímos a sequência bn = an+ 1/an .Assim sendo encontre b, tal que bn tenda a b.

Ou seja, mostre que b converge para 1 + ?5/2. Sei que tenho que fazer pelo lim bn = lim b (n + 1), mas já faz um bom tempo que não faço tal exercícios
Cah
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Out 23, 2010 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Sequencia

Mensagempor nietzsche » Sex Set 02, 2011 00:42

amparo,
divida os termos de an por n^3 em "cima e embaixo da fração" e tente calcular o limite, vc verá que an diverge. para calcular os primeiros termos basta trocar n pelos números 1, depois 2, depois 3, depois 4. para cada valor de n, vc tem um valor para an. por exemplo se n=0, então a0 = 0.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Sequências

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}