por Felipe Sioto » Dom Out 21, 2012 19:52
Use o método das cascas cilíndricas para encontrar o sólido obtido pela roração da região limitada por y=\sqrt{x}, y=0 e x=1 ao redor do eixo x=-2.
OK, plotei o grafico da função, limitei ela no primeiro quadrante (y = 0) e limitei em x =1, fiz a revolução, e encontrei o "vaso" o problema é que nao sei qual a função que vou usar para int_a,b~(2*pi* (y')^2 dx
alguma ajuda? ja me matei de tentar e n sei mais oque fazer.
(edit) ele pede o volume.
-
Felipe Sioto
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Out 21, 2012 19:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Superfícies cilindricas
por Priscila_moraes » Qua Nov 16, 2011 12:23
- 0 Respostas
- 1128 Exibições
- Última mensagem por Priscila_moraes

Qua Nov 16, 2011 12:23
Geometria Analítica
-
- Coordenadas cilíndricas
por Marcos_Mecatronica » Seg Jul 08, 2013 01:38
- 1 Respostas
- 1213 Exibições
- Última mensagem por young_jedi

Seg Jul 08, 2013 22:17
Geometria Analítica
-
- Coordenadas retangulares para cilindricas
por ah001334 » Dom Nov 27, 2011 16:44
- 0 Respostas
- 1369 Exibições
- Última mensagem por ah001334

Dom Nov 27, 2011 16:44
Geometria Analítica
-
- [Coordenadas Cilíndricas] Integral Tripla
por raimundoocjr » Sáb Dez 14, 2013 11:07
- 1 Respostas
- 3133 Exibições
- Última mensagem por Russman

Dom Dez 15, 2013 02:55
Cálculo: Limites, Derivadas e Integrais
-
- Liquido contido em latas cilindricas
por Katia Silveira » Seg Out 13, 2014 19:37
- 1 Respostas
- 1885 Exibições
- Última mensagem por Cleyson007

Seg Out 13, 2014 20:42
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.