• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limite indeterminado de função racional com duas raizes

limite indeterminado de função racional com duas raizes

Mensagempor jmcustodio » Dom Set 23, 2012 12:59

Bom dia, postei uma duvida no fórum ontem, mas digitei a função errada e estou precisando de ajuda.

Não sei como resolver esta questão abaixo:

\lim_{x\rightarrow2}\frac{\sqrt[]{2x+3}-\sqrt[]{3x+1}}{{x}^{2}-4}

Se alguém puder me ajudar resolvendo passo a passo para que eu possa entender como foi resolvido, agradeço muito.

Desde já muito obrigado

João Mario
jmcustodio
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Set 22, 2012 22:28
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: limite indeterminado de função racional com duas raizes

Mensagempor MarceloFantini » Dom Set 23, 2012 13:36

Multiplique e divida por \sqrt{2x+3} + \sqrt{3x+1}, fatore x^2-4, simplifique e aplique o limite.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}