• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada - Problema

Derivada - Problema

Mensagempor iceman » Dom Set 16, 2012 20:05

A função horária de um móvel é definida por S=6T+T^2 , qual o espaço percorrido quando:

a)T= 0 Seg
b)T= 1 Seg
c)T= 2 Seg

Alguém ajuda, por favor ?
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada - Problema

Mensagempor Renato_RJ » Dom Set 16, 2012 20:34

Boa noite !!!!

Seguinte, essa função é a função horária da posição ?? Pois se for, não precisa derivar, basta aplicar os valores.....
Agora, se você quer a velocidade da partícula nos instantes dados (a função horária da velocidade), então vai precisar derivar a função. Veja:

S = 6T + T^2 \Rightarrow \frac{dS}{dt} = 6 + 2T

Agora é aplicar os valores...

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Derivada - Problema

Mensagempor iceman » Dom Set 16, 2012 20:42

Renato_RJ escreveu:Boa noite !!!!

Seguinte, essa função é a função horária da posição ?? Pois se for, não precisa derivar, basta aplicar os valores.....
Agora, se você quer a velocidade da partícula nos instantes dados (a função horária da velocidade), então vai precisar derivar a função. Veja:

S = 6T + T^2 \Rightarrow \frac{dS}{dt} = 6 + 2T

Agora é aplicar os valores...

Abraços,
Renato.



A questão só fala isso....
Eu fiz assim, poderia ver se está certo?


6.0 + 2.0 = 0

6.1 + 2.1 = 9

6.2+2.2 = 16
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada - Problema

Mensagempor Renato_RJ » Dom Set 16, 2012 20:49

iceman escreveu:
Renato_RJ escreveu:Boa noite !!!!

Seguinte, essa função é a função horária da posição ?? Pois se for, não precisa derivar, basta aplicar os valores.....
Agora, se você quer a velocidade da partícula nos instantes dados (a função horária da velocidade), então vai precisar derivar a função. Veja:

S = 6T + T^2 \Rightarrow \frac{dS}{dt} = 6 + 2T

Agora é aplicar os valores...

Abraços,
Renato.



A questão só fala isso....
Eu fiz assim, poderia ver se está certo?


6.0 + 2.0 = 0

6.1 + 2.1 = 9

6.2+2.2 = 16


Campeão, se o problema dá a função horária da posição e pede a velocidade nos instantes dados, então você cometeu um engano pequeno, lembre-se que calculamos S = 6T + T^2 \Rightarrow \frac{dS}{dt} = 6 + 2T, então não precisa multiplicar o 6 pela variável T (olha a derivada como ficou)....

[ ]'s
Renato..
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)