• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] Raiz no numerador

[limite] Raiz no numerador

Mensagempor emanes » Qua Ago 22, 2012 09:08

Alguém pode me ajudar com a questão abaixo:

\lim_{3}\frac{\sqrt[]{x}-9}{x-3}

Tentei resolver multiplicando o numerador e o denominador por \sqrt[]{x}+9 mas não consegui.

Obrigado
emanes
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Ago 17, 2012 09:19
Formação Escolar: ENSINO MÉDIO
Área/Curso: contabil
Andamento: cursando

Re: [limite] Raiz no numerador

Mensagempor e8group » Qua Ago 22, 2012 10:32

Perceba que não temos uma indeterminação " 0/0 " ,uma vez que o numerador é diferente que zero . Quanto a solução ,

\lim_{x\to3} \frac{\sqrt{x}-9}{x-3}  = " \frac{\sqrt{3} -9}{0} " =\infty.
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.