• Anúncio Global
    Respostas
    Exibições
    Última mensagem

MÁXIMO E MÍNIMO - DERIVADA

MÁXIMO E MÍNIMO - DERIVADA

Mensagempor Andresa_s » Sex Jul 27, 2012 21:22

QUESTÃO ENVOLVENDO MÁXIMO E MÍNIMO - DERIVADA: ABCD é um pedaço de papel quadrado com lados de comprimento 1 m. Um quarto de círculo é traçado de B a D com centro em A. O pedaço de papel é dobrado ao longo de EF, com E em AB e F em AD, de tal forma que A caia sobre o quarto de círculo. Determine a área máxima e a mínima que o triângulo AEF pode ter. (Tivemos uma dica que para encontrar um resultado é preciso usar também cálculo de semi circulo, desde já agradeço a ajuda!)
Andresa_s
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 27, 2012 21:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: MÁXIMO E MÍNIMO - DERIVADA

Mensagempor LuizAquino » Sex Jul 27, 2012 23:17

Andresa_s escreveu:QUESTÃO ENVOLVENDO MÁXIMO E MÍNIMO - DERIVADA: ABCD é um pedaço de papel quadrado com lados de comprimento 1 m. Um quarto de círculo é traçado de B a D com centro em A. O pedaço de papel é dobrado ao longo de EF, com E em AB e F em AD, de tal forma que A caia sobre o quarto de círculo. Determine a área máxima e a mínima que o triângulo AEF pode ter. (Tivemos uma dica que para encontrar um resultado é preciso usar também cálculo de semi circulo, desde já agradeço a ajuda!)


A figura abaixo ilustra o exercício.

figura.png
figura.png (10.83 KiB) Exibido 2543 vezes


Analisando a primeira parte da figura, note que AEF é um triângulo retângulo. Já analisando a segunda parte, note que os triângulos A'EA e A'FA são isósceles.

Considerando que \overline{AE} = x , \overline{AF} = y e E\hat{A^\prime}A = \alpha , aplicando a Lei dos Cossenos nos triângulos A'EA e A'FA, lembrando que \overline{A^\prime A} = 1, obtemos que:

\begin{cases}
x^2 = x^2 + 1^2 - 2\cdot x \cdot 1 \cdot \cos \alpha \\ \\
y^2 = y^2 + 1^2 - 2\cdot y \cdot 1 \cdot \cos (90^\circ - \alpha)
\end{cases}
\implies
\begin{cases}
x  = \dfrac{1}{2\cos \alpha} \\ \\
y  = \dfrac{1}{2\cos (90^\circ - \alpha)}
\end{cases}

Note que a área do triângulo AEF será dada por \frac{xy}{2} .

Agora tente continuar o exercício a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: MÁXIMO E MÍNIMO - DERIVADA

Mensagempor Andresa_s » Sex Jul 27, 2012 23:38

Ok, agora já sei como continuar... Obrigada mesmo! :D
Andresa_s
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 27, 2012 21:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.