• Anúncio Global
    Respostas
    Exibições
    Última mensagem

MÁXIMO E MÍNIMO - DERIVADA

MÁXIMO E MÍNIMO - DERIVADA

Mensagempor Andresa_s » Sex Jul 27, 2012 21:22

QUESTÃO ENVOLVENDO MÁXIMO E MÍNIMO - DERIVADA: ABCD é um pedaço de papel quadrado com lados de comprimento 1 m. Um quarto de círculo é traçado de B a D com centro em A. O pedaço de papel é dobrado ao longo de EF, com E em AB e F em AD, de tal forma que A caia sobre o quarto de círculo. Determine a área máxima e a mínima que o triângulo AEF pode ter. (Tivemos uma dica que para encontrar um resultado é preciso usar também cálculo de semi circulo, desde já agradeço a ajuda!)
Andresa_s
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 27, 2012 21:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando

Re: MÁXIMO E MÍNIMO - DERIVADA

Mensagempor LuizAquino » Sex Jul 27, 2012 23:17

Andresa_s escreveu:QUESTÃO ENVOLVENDO MÁXIMO E MÍNIMO - DERIVADA: ABCD é um pedaço de papel quadrado com lados de comprimento 1 m. Um quarto de círculo é traçado de B a D com centro em A. O pedaço de papel é dobrado ao longo de EF, com E em AB e F em AD, de tal forma que A caia sobre o quarto de círculo. Determine a área máxima e a mínima que o triângulo AEF pode ter. (Tivemos uma dica que para encontrar um resultado é preciso usar também cálculo de semi circulo, desde já agradeço a ajuda!)


A figura abaixo ilustra o exercício.

figura.png
figura.png (10.83 KiB) Exibido 2673 vezes


Analisando a primeira parte da figura, note que AEF é um triângulo retângulo. Já analisando a segunda parte, note que os triângulos A'EA e A'FA são isósceles.

Considerando que \overline{AE} = x , \overline{AF} = y e E\hat{A^\prime}A = \alpha , aplicando a Lei dos Cossenos nos triângulos A'EA e A'FA, lembrando que \overline{A^\prime A} = 1, obtemos que:

\begin{cases}
x^2 = x^2 + 1^2 - 2\cdot x \cdot 1 \cdot \cos \alpha \\ \\
y^2 = y^2 + 1^2 - 2\cdot y \cdot 1 \cdot \cos (90^\circ - \alpha)
\end{cases}
\implies
\begin{cases}
x  = \dfrac{1}{2\cos \alpha} \\ \\
y  = \dfrac{1}{2\cos (90^\circ - \alpha)}
\end{cases}

Note que a área do triângulo AEF será dada por \frac{xy}{2} .

Agora tente continuar o exercício a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: MÁXIMO E MÍNIMO - DERIVADA

Mensagempor Andresa_s » Sex Jul 27, 2012 23:38

Ok, agora já sei como continuar... Obrigada mesmo! :D
Andresa_s
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jul 27, 2012 21:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}