• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fórmula Fechada

Fórmula Fechada

Mensagempor Russman » Sex Jul 20, 2012 12:36

Eu procurei sem sucesso uma fórmula fechada para a derivada n-ésima total de um produto de N funções! Isto é, eu gostaria de encontrar uma fórmula fechada para a n-ésima derivada de :

\frac{\mathrm{d}^{n} }{\mathrm{d} x^{n}}\left [f_{1}(x).f_{2}(x).\cdot \cdot \cdot f_{N}(x)  \right ]=\frac{\mathrm{d}^{n} }{\mathrm{d} x^{n}}\prod_{j=1}^{N}f_{i}(x) = ?

Obrigado pela parceria.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Fórmula Fechada

Mensagempor e8group » Sex Jul 20, 2012 16:47

Russman . Não sei se vai te ajudar ,mas não seria isto ?

\frac{\mathrm{d^n }} {\mathrm{d} x^n}  \prod_{j=1}^{n} f_i(x) = \prod_{j=1}^{n}\left(f_i f_{(i+1)} \right )^{(n)} ,onde :

\left(f_i f_{(i+1)} \right )^{(n)} =\sum_{i=0}^{n}\binom{n}{i} f_i^{(n-i)}f_{(i+1)}^i

Uso da notação (n) significa derivar n-vezes .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Fórmula Fechada

Mensagempor Russman » Sex Jul 20, 2012 22:49

Obrigado, Shantiago. Mas eu acredito que a fórmula não esteja certa. ;x
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}