• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite e Continuidade] - Cálculo II

[Limite e Continuidade] - Cálculo II

Mensagempor milerengcomp » Qui Jun 14, 2012 21:39

Calcule \lim_{(x,y)->(\sqrt2/2,\sqrt2/2)}{e}^{1/(x^2+y^2-1)}/(x^2+y^2-1).
Tentei:
1) Variar x fixando y em 0;
2) Variar y fixando x em 0;
3) Fazer x = y = t.
Mas não consegui fugir da indeterminação.
O limite é 0. Se alguém puder provar, agradeço desde já.
milerengcomp
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 20, 2012 21:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Limite e Continuidade] - Cálculo II

Mensagempor LuizAquino » Sex Jun 15, 2012 18:57

milerengcomp escreveu:Calcule \lim_{(x,y)->(\sqrt2/2,\sqrt2/2)}{e}^{1/(x^2+y^2-1)}/(x^2+y^2-1).
Tentei:
1) Variar x fixando y em 0;
2) Variar y fixando x em 0;
3) Fazer x = y = t.
Mas não consegui fugir da indeterminação.
O limite é 0. Se alguém puder provar, agradeço desde já.


Primeiro, esse limite não é igual a 0. Na verdade, ele não existe.

E em segundo, não faria sentido fixar y = 0 ou x = 0, pois nesse caso você não se aproximaria do ponto desejado. Por exemplo, fazendo x = t e y = 0, quando t\to\frac{\sqrt{2}}{2} temos que (x,\,y) \to \left(\frac{\sqrt{2}}{2},\,0\right) . Note que esse não é o ponto desejado para o limite.

Já a sua tentativa x = y = t faz mais sentido. Nesse caso, quando t\to\frac{\sqrt{2}}{2}, temos que (x,\,y) \to \left(\frac{\sqrt{2}}{2},\,\frac{\sqrt{2}}{2}\right) .

Escolhendo esse caminho, note que:

(i) \lim_{t\to\frac{\sqrt{2}}{2}^+} \frac{e^{\frac{1}{2t^2 - 1}}}{2t^2 - 1} = +\infty

(ii) \lim_{t\to\frac{\sqrt{2}}{2}^-} \frac{e^{\frac{1}{2t^2 - 1}}}{2t^2 - 1} = 0

Como os limites laterais são distintos, temos que \lim_{t\to\frac{\sqrt{2}}{2}} \frac{e^{\frac{1}{2t^2 - 1}}}{2t^2 - 1} não existe. Como para esse caminho o limite não existe, temos que o limite original também não existe.

Vejamos agora como calcular os limites (i) e (ii).

Para calcular (i), perceba que quando t\to\frac{\sqrt{2}}{2}^+ , temos que 2t^2 - 1 \to 0^+ . Sendo assim, teremos que \frac{1}{2t^2 - 1} \to +\infty e e^{\frac{1}{2t^2 - 1}} \to +\infty . Usando essas informações, temos que:

\lim_{t\to\frac{\sqrt{2}}{2}^+} \frac{e^{\frac{1}{2t^2 - 1}}}{2t^2 - 1} = \lim_{t\to\frac{\sqrt{2}}{2}^+} \frac{1}{2t^2 - 1} e^{\frac{1}{2t^2 - 1}} = (+\infty)(+\infty) = +\infty

Já para calcular (ii), perceba que quando t\to\frac{\sqrt{2}}{2}^- , temos que 2t^2 - 1 \to 0^- . Sendo assim, teremos que \frac{1}{2t^2 - 1} \to -\infty e e^{\frac{1}{2t^2 - 1}} \to 0^+ . Usando essas informações, podemos aplicar a Regra de L'Hospital, já que temos uma indeterminação do tipo 0/0. Para facilitar, faremos a substituição u = 2t^2 - 1 . Temos então que:

\lim_{t\to\frac{\sqrt{2}}{2}^-} \frac{e^{\frac{1}{2t^2 - 1}}}{2t^2 - 1} = \lim_{u\to 0^-} \frac{e^{\frac{1}{u}}}{u}

= \lim_{u\to 0^-} \frac{\frac{1}{u}}{e^{-\frac{1}{u}}}

= \lim_{u\to 0^-} \frac{\left(\frac{1}{u}\right)^\prime}{\left(e^{-\frac{1}{u}}\right)^\prime}

= \lim_{u\to 0^-} \frac{-\frac{1}{u^2}}{\frac{1}{u^2} e^{-\frac{1}{u}}}

= \lim_{u\to 0^-} -\frac{1}{e^{-\frac{1}{u}}}

= \lim_{u\to 0^-} -e^{\frac{1}{u}}

= 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}