• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dúvida]Aplicações de Integração - Volume do Tronco de Cone

[Dúvida]Aplicações de Integração - Volume do Tronco de Cone

Mensagempor Jhonata » Dom Jun 10, 2012 12:45

Bem, o tópico já sugere o que estou estudando, então, vou direto ao ponto.
Me deparei com a seguinte questão: "Aplique os conceitos de integração para encontrar o volume de um tronco de cone circular reto de altura h, raio da base inferior R e raio de base superior r conforme ilustrado na figura abaixo:
Imagem

Eu fiz umas relações forçadas, jogando a parte lateral triangular no eixo cartesiano, tentei também arrumar as relações por um trapézio, mas tudo me levou a uma resposta errada. Se alguém puder me ajudar, eu já agradeço a disposição. Toda ajuda é bem vinda. :)

O gabarito é: \frac{1}{3}\pi h(R^2+Rr+r^2)(Bem prevísivel, não? huahua)

Bem, eu voltei a tentar resolver essa questão, encontrei a seguinte relação entre os triângulos semelhantes pelas linhas que puxei dentro do próprio sólido, enfim, empaquei e nem sei se estar certo:

\frac{R-r}{R-x}=\frac{h}{y} \Rightarrow y=\frac{(R-x)h}{R-r}

Logo, como a secção transversal é uma circunferência, temos que sua área é:

A(x)=\pi\left[\frac{(R-x)h}{R-r}\right]^2

E o volume do sólido é supostamente a seguinte integral:

\int_{0}^{R}A(x) dx = \int_{0}^{R}\pi\left[\frac{(R-x)h}{R-r}\right]^2 dx

Bem, eu tentei resolver essa joça, mas ainda não está de acordo com o gabarito, portanto deixei assim mesmo... Pode ser que a relação esteja errada, mas eu creio que não. :/
Se estiver errado, não sei mais o que posso fazer.




OBS: Treco difícil, viu? (╯°□°)╯︵ ┻━┻


.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Dúvida]Aplicações de Integração - Volume do Tronco de C

Mensagempor LuizAquino » Seg Jun 11, 2012 11:35

Jhonata escreveu:Bem, o tópico já sugere o que estou estudando, então, vou direto ao ponto.
Me deparei com a seguinte questão: "Aplique os conceitos de integração para encontrar o volume de um tronco de cone circular reto de altura h, raio da base inferior R e raio de base superior r conforme ilustrado na figura abaixo:

troncodecone1.jpg
troncodecone1.jpg (10.17 KiB) Exibido 6292 vezes


Eu fiz umas relações forçadas, jogando a parte lateral triangular no eixo cartesiano, tentei também arrumar as relações por um trapézio, mas tudo me levou a uma resposta errada. Se alguém puder me ajudar, eu já agradeço a disposição. Toda ajuda é bem vinda. :)

O gabarito é: \frac{1}{3}\pi h(R^2+Rr+r^2)(Bem prevísivel, não? huahua)

Bem, eu voltei a tentar resolver essa questão, encontrei a seguinte relação entre os triângulos semelhantes pelas linhas que puxei dentro do próprio sólido, enfim, empaquei e nem sei se estar certo:

\frac{R-r}{R-x}=\frac{h}{y} \Rightarrow y=\frac{(R-x)h}{R-r}

Logo, como a secção transversal é uma circunferência, temos que sua área é:

A(x)=\pi\left[\frac{(R-x)h}{R-r}\right]^2

E o volume do sólido é supostamente a seguinte integral:

\int_{0}^{R}A(x) dx = \int_{0}^{R}\pi\left[\frac{(R-x)h}{R-r}\right]^2 dx

Bem, eu tentei resolver essa joça, mas ainda não está de acordo com o gabarito, portanto deixei assim mesmo... Pode ser que a relação esteja errada, mas eu creio que não. :/
Se estiver errado, não sei mais o que posso fazer.


Considere a figura abaixo.

troncodecone2.jpg
troncodecone2.jpg (14.68 KiB) Exibido 6292 vezes


Por semelhança de triângulos, temos que:

\dfrac{h-x}{h} = \dfrac{y-r}{R-r} \implies y = \dfrac{(h-x)(R-r)}{h} + r

Desse modo, a área de cada seção transversal (paralela a base de raio R) será dada por:

A(x) = \pi y^2 \implies A(x) = \pi \left[\dfrac{(h-x)(R-r)}{h} + r\right]^2

Portanto, o volume do sólido será dado por:

V = \int_0^h A(x) \,dx \implies V = \int_0^h \pi \left[\dfrac{(h-x)(R-r)}{h} + r\right]^2 \,dx

Agora continue o exercício a partir daí.

Observação

Você inseriu a sua figura através de um servidor externo (no caso, o servidor http://imageshack.us/).

Ao invés de usar um servidor externo (que periodicamente excluem suas imagens menos usadas), use o nosso próprio servidor para armazenar suas figuras.

Basta usar a seção "Anexar arquivo" que está disponível durante a edição de um tópico. Vide a explicação no tópico abaixo:

[Anexos] Envio de anexos
viewtopic.php?f=134&t=7460
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Dúvida]Aplicações de Integração - Volume do Tronco de C

Mensagempor Jhonata » Ter Jun 12, 2012 12:20

LuizAquino escreveu:
Jhonata escreveu:Bem, o tópico já sugere o que estou estudando, então, vou direto ao ponto.
Me deparei com a seguinte questão: "Aplique os conceitos de integração para encontrar o volume de um tronco de cone circular reto de altura h, raio da base inferior R e raio de base superior r conforme ilustrado na figura abaixo:

troncodecone1.jpg


Eu fiz umas relações forçadas, jogando a parte lateral triangular no eixo cartesiano, tentei também arrumar as relações por um trapézio, mas tudo me levou a uma resposta errada. Se alguém puder me ajudar, eu já agradeço a disposição. Toda ajuda é bem vinda. :)

O gabarito é: \frac{1}{3}\pi h(R^2+Rr+r^2)(Bem prevísivel, não? huahua)

Bem, eu voltei a tentar resolver essa questão, encontrei a seguinte relação entre os triângulos semelhantes pelas linhas que puxei dentro do próprio sólido, enfim, empaquei e nem sei se estar certo:

\frac{R-r}{R-x}=\frac{h}{y} \Rightarrow y=\frac{(R-x)h}{R-r}

Logo, como a secção transversal é uma circunferência, temos que sua área é:

A(x)=\pi\left[\frac{(R-x)h}{R-r}\right]^2

E o volume do sólido é supostamente a seguinte integral:

\int_{0}^{R}A(x) dx = \int_{0}^{R}\pi\left[\frac{(R-x)h}{R-r}\right]^2 dx

Bem, eu tentei resolver essa joça, mas ainda não está de acordo com o gabarito, portanto deixei assim mesmo... Pode ser que a relação esteja errada, mas eu creio que não. :/
Se estiver errado, não sei mais o que posso fazer.


Considere a figura abaixo.

troncodecone2.jpg


Por semelhança de triângulos, temos que:

\dfrac{h-x}{h} = \dfrac{y-r}{R-r} \implies y = \dfrac{(h-x)(R-r)}{h} + r

Desse modo, a área de cada seção transversal (paralela a base de raio R) será dada por:

A(x) = \pi y^2 \implies A(x) = \pi \left[\dfrac{(h-x)(R-r)}{h} + r\right]^2

Portanto, o volume do sólido será dado por:

V = \int_0^h A(x) \,dx \implies V = \int_0^h \pi \left[\dfrac{(h-x)(R-r)}{h} + r\right]^2 \,dx

Agora continue o exercício a partir daí.

Observação

Você inseriu a sua figura através de um servidor externo (no caso, o servidor http://imageshack.us/).

Ao invés de usar um servidor externo (que periodicamente excluem suas imagens menos usadas), use o nosso próprio servidor para armazenar suas figuras.

Basta usar a seção "Anexar arquivo" que está disponível durante a edição de um tópico. Vide a explicação no tópico abaixo:

[Anexos] Envio de anexos
viewtopic.php?f=134&t=7460



Muito obrigado, Luis!! x)
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D


cron