• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivar função com módulo

derivar função com módulo

Mensagempor amanda costa » Sex Jun 01, 2012 01:10

Teve uma questão na minha prova de cálculo hoje que gostaria de saber qual é a resposta certa

Na função f(x)=\left(x-2 \right)\left|x \right| era pra mostrar se existia f'(0)

eu calculei e deu -2, mas acho que está errada. Se alguém puder me mostrar como resolve eu agradeço.
amanda costa
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Abr 10, 2012 21:25
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: derivar função com módulo

Mensagempor Russman » Sex Jun 01, 2012 01:46

O limite da derivada quando x tente a 0 pela esqerda é 2 e pela direita é -2. Logo, não existe o limite bilateral. Assim, a derivada não existe.

Desenvolvendo direitinho, eu sugiro que você tome a função definida para os reais positivos e negativos. Derive e então estude os limites para x tendendo a 0 pela direita e pela esquerda! Isto é,

f(x)=\left(x-2 \right)\left|x \right|=\left\{\begin{matrix}
x^{2}-2x &,x>0 \\ 
 -x^{2}+2x&,x<0 
\end{matrix}\right.\Rightarrow f'(x)=\left\{\begin{matrix}
2x-2 &, x>0 \\ 
 -2x+2&,x<0 
\end{matrix}\right.

Assim,

\lim_{x\rightarrow 0^{+} }f'(x) = \lim_{x\rightarrow 0^{+} }(2x-2)=-2

e

\lim_{x\rightarrow 0^{-} }f'(x) = \lim_{x\rightarrow 0^{+} }(-2x+2)=2

Como você vê o limite bilateral L,

L=\lim_{x\rightarrow 0 }f'(x),

não existe. Assim, não existe a derivada dessa função em x=0.

Sinto muito.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: derivar função com módulo

Mensagempor Francisco de Brito » Sex Jun 01, 2012 11:02

Uma função é derivável num ponto quando as derivadas laterais (a direita e a esquerda)
existem e são iguais neste ponto.

Só pra ter u,a noção melhor ainda do assunto .....
Francisco de Brito
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jun 01, 2012 11:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando

Re: derivar função com módulo

Mensagempor Francisco de Brito » Sex Jun 01, 2012 11:03

Russman escreveu:O limite da derivada quando x tente a 0 pela esqerda é 2 e pela direita é -2. Logo, não existe o limite bilateral. Assim, a derivada não existe.

Desenvolvendo direitinho, eu sugiro que você tome a função definida para os reais positivos e negativos. Derive e então estude os limites para x tendendo a 0 pela direita e pela esquerda! Isto é,

f(x)=\left(x-2 \right)\left|x \right|=\left\{\begin{matrix}
x^{2}-2x &,x>0 \\ 
 -x^{2}+2x&,x<0 
\end{matrix}\right.\Rightarrow f'(x)=\left\{\begin{matrix}
2x-2 &, x>0 \\ 
 -2x+2&,x<0 
\end{matrix}\right.

Assim,

\lim_{x\rightarrow 0^{+} }f'(x) = \lim_{x\rightarrow 0^{+} }(2x-2)=-2

e

\lim_{x\rightarrow 0^{-} }f'(x) = \lim_{x\rightarrow 0^{+} }(-2x+2)=2

Como você vê o limite bilateral L,

L=\lim_{x\rightarrow 0 }f'(x),

não existe. Assim, não existe a derivada dessa função em x=0.

Sinto muito.



Uma função é derivável num ponto quando as derivadas laterais (a direita e a esquerda)
existem e são iguais neste ponto.
Francisco de Brito
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jun 01, 2012 11:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando

Re: derivar função com módulo

Mensagempor joaofonseca » Sex Jun 01, 2012 18:49

Genericamente as funções modulo são continuas mas não são difererenciáveis
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: