• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Inversa

Função Inversa

Mensagempor matematicouff » Ter Mai 15, 2012 14:31

Como mostro que essa função admite inversa?

- Mostre que a função f(x)=x.arctg(x) admite inversa no intervalo (-\infty,0], e use o Teorema da Função Inversa para calcular ({f}^{-1}){}^{\prime}(f(-1)).
matematicouff
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Abr 29, 2012 15:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Inversa

Mensagempor LuizAquino » Sex Mai 18, 2012 19:54

matematicouff escreveu:Como mostro que essa função admite inversa?

- Mostre que a função f(x)=x.arctg(x) admite inversa no intervalo (-\infty,0], e use o Teorema da Função Inversa para calcular ({f}^{-1}){}^{\prime}(f(-1)).


Sabemos que:

Se f é estritamente crescente ou estritamente decresencente em seu domínio, então f é inversível.

Lembrando que uma função é estritamente crescente em [a, b] quando f^\prime(x) > 0 para todo x em [a, b]. Por outro lado, uma função é estritamente decrescente em [a, b] quando f^\prime(x) < 0 para todo x em [a, b].

Agora tente usar essas informações.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Função Inversa

Mensagempor matematicouff » Dom Mai 20, 2012 04:47

Ok, derivei a função e deu o seguinte: {f}^{\prime}(x)=\frac{x}{1+x^2}+arctg(x).

Analizando o sinal dessa função, vemos que ela é negativa em todo o intervalo (-\infty, 0] ==> {f}^{\prime} (x)=\frac{(x)<0}{(1+x^2)>0}+(arctg(x))<0. Logo, f é decrescente nesse intervalo e então admite inversa.
Empaquei agora foi na derivada. Poderia me ajudar?
matematicouff
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Dom Abr 29, 2012 15:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Inversa

Mensagempor LuizAquino » Dom Mai 20, 2012 21:39

matematicouff escreveu:Ok, derivei a função e deu o seguinte: {f}^{\prime}(x)=\frac{x}{1+x^2}+arctg(x).


Ok.

matematicouff escreveu:Analizando o sinal dessa função, vemos que ela é negativa em todo o intervalo (-\infty, 0] ==> {f}^{\prime} (x)=\frac{(x)<0}{(1+x^2)>0}+(arctg(x))<0. Logo, f é decrescente nesse intervalo e então admite inversa.


Cuidado! O intervalo que você escreveu inclui o zero. Note que para x = 0 a derivada é nula, e não negativa como você afirma.

Sendo assim, primeiro você pode afirmar que a função f é estritamente decrescente em (-\infty,\, 0) .

Em seguida, usando a continuidade de f, você pode incluir o zero nesse intervalo e dizer que ela ainda é estritamente decrescente em (-\infty,\, 0] .

matematicouff escreveu:Empaquei agora foi na derivada. Poderia me ajudar?


Pelo Teorema da Função Inversa, temos que:

\left(f^{-1}\right)^\prime (f(-1)) = \frac{1}{f^\prime (-1)}

Note que você já calculou f^\prime (x) . Basta agora avaliá-la em x = -1.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D