por rafaelbr91 » Sáb Mai 12, 2012 19:32
Bem, eu queria saber como vou fazer o esboço gráfico da função f(x)= x³-2x+3x , o problema consiste no momento em que vou achar o ponto crítico da função, pois as raízes de f '(x), que corresponde à, 3x²-4x+3, são raízes complexas, dai eu n sei como representálas no gráfico( a dúvida é em relação a complexos então..), as raízes são : x' = 0,66 + 0,74.i e x" = 0,66 - 0,74.i Como represento elas graficamente? Agradecido.
-
rafaelbr91
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Ter Mar 27, 2012 17:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Civil
- Andamento: cursando
por LuizAquino » Seg Mai 14, 2012 09:18
rafaelbr91 escreveu:Bem, eu queria saber como vou fazer o esboço gráfico da função f(x)= x³-2x+3x , o problema consiste no momento em que vou achar o ponto crítico da função, pois as raízes de f '(x), que corresponde à, 3x²-4x+3, são raízes complexas, dai eu n sei como representálas no gráfico( a dúvida é em relação a complexos então..), as raízes são : x' = 0,66 + 0,74.i e x" = 0,66 - 0,74.i Como represento elas graficamente? Agradecido.
Eu presumo que a função seja

e não

como você escreveu.
Você não tem que representar as raízes complexas. Lembre-se que o fato de uma função polinomial do 2° grau ter raízes complexas significa que seu gráfico não toca no eixo x. Ou seja, dependendo da concavidade da parábola (que representa o gráfico dessa função polinomial), irá ocorrer p(x) > 0 ou p(x) < 0 para todo x no domínio de p.
No caso, temos o polinômio

. Como suas raízes são complexas e a concavidade da parábola é para cima, temos que

para todo x.
Como a primeira derivada é sempre positiva, temos que o gráfico de
f é sempre crescente.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [CURVAS] Esboço da trajetória
por inkz » Ter Nov 20, 2012 01:14
- 2 Respostas
- 1762 Exibições
- Última mensagem por inkz

Ter Nov 20, 2012 01:52
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] esboço de gráfico
por beel » Ter Nov 01, 2011 16:16
- 1 Respostas
- 2065 Exibições
- Última mensagem por LuizAquino

Ter Nov 01, 2011 16:29
Cálculo: Limites, Derivadas e Integrais
-
- Esboco de gráfico com técnicas de calculo
por yagocipoli » Seg Jan 19, 2015 09:47
- 0 Respostas
- 1009 Exibições
- Última mensagem por yagocipoli

Seg Jan 19, 2015 09:47
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo vetorial. Curvas
por guilherme5088 » Ter Abr 06, 2021 11:34
- 8 Respostas
- 7135 Exibições
- Última mensagem por LuizAquino

Sex Abr 09, 2021 21:45
Cálculo: Limites, Derivadas e Integrais
-
- Esboço do gráfico
por Dan » Sex Out 02, 2009 09:07
- 1 Respostas
- 3517 Exibições
- Última mensagem por admin

Sex Out 02, 2009 09:26
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.