• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integrais de linha]

[Integrais de linha]

Mensagempor AlexandreTS » Sáb Mai 05, 2012 22:52

Calcular \int_{c}^{}x{y}^{4} , sendo C a metade direita do círculo {x}^{2} + {y}^{2} = 16.

O que eu fiz:
1) Achar uma parametrização x(t) e y(t):
Utilizei x(t) = cos(t) e y(t) = sen(t). Elevando as derivadas das funções componentes ao quadrado, somando elas e colocando na raiz, temos 1, então a integral de linha fica igual a:

\int_{c}^{}cos(t){sen(t)}^{4}

2) Coloquei como limites de integração \frac{-\pi}{2} e \frac{\pi}{2}.

3) Fiz então a substituição u = {sen(t)}^{2}, de modo que dt = \frac{du}{2cos(t)} e a integral fica assim:
\frac{1}{2}\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}{u}^{2}du
A partir disso ficou fácil calcular o valor da integral, mas o resultado, segundo o livro, é de 1638,4. Não sei em que parte errei, se os limites escolhidos estão certos... tem um momento em que eu elimino o cosseno da integral por uma divisão; acho que isso está errado, mas não sei se foi exatamente nessa parte que eu errei.

Ajudem por favor!
AlexandreTS
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Mar 30, 2012 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Integrais de linha]

Mensagempor AlexandreTS » Sáb Mai 05, 2012 22:55

Aaaah o que eu errei foi na parametrização, certo? Eu preciso colocar rcos(t) e rsen(t), então teria x(t) = 4cos(t) e y(t) = 4sen(t)... certo?
AlexandreTS
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Mar 30, 2012 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.