• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Mudança de Variável

Mudança de Variável

Mensagempor DanielFerreira » Dom Abr 22, 2012 13:58

danjr5 escreveu: Calcule \int_{D}^{}\int_{}^{}\frac{y + 2x}{\sqrt[]{y - 2x - 1}}dx dy, onde D é a região do plano xy limitada pelas retas y - 2x = 2, y + 2x = 2, y - 2x = 1 e y + 2x = 1

Fiz assim:
considerei...
u = y + 2x
v = y - 2x - 1

Calculei o Jacobiano e encontrei \frac{1}{4};

Substituí u e v em todas as retas e encontrei: v = 1, u = 2, v = 0 e u = \frac{1}{2}

Minha integral ficou assim: \int_{0}^{1}\int_{\frac{1}{2}}^{2}\frac{u}{\sqrt[]{v}}.\frac{1}{4} du dv

Calculando-a achei \frac{15}{16}.

Segundo o gabarito é \frac{3}{4}.

Desde já agradeço a quem puder ajudar.

Att,

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Mudança de Variável

Mensagempor LuizAquino » Ter Abr 24, 2012 18:48

danjr5 escreveu:
Calcule \int_{D}^{}\int_{}^{}\frac{y + 2x}{\sqrt[]{y - 2x - 1}}dx dy, onde D é a região do plano xy limitada pelas retas y - 2x = 2, y + 2x = 2, y - 2x = 1 e y + 2x = 1

Fiz assim:
considerei...
u = y + 2x
v = y - 2x - 1

Calculei o Jacobiano e encontrei \frac{1}{4};

Substituí u e v em todas as retas e encontrei: v = 1, u = 2, v = 0 e u = \frac{1}{2}

Minha integral ficou assim: \int_{0}^{1}\int_{\frac{1}{2}}^{2}\frac{u}{\sqrt[]{v}}.\frac{1}{4} du dv

Calculando-a achei \frac{15}{16}.

Segundo o gabarito é \frac{3}{4}.


Reveja o intervalo de integração para u. Note que ele será [1, 2].
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Mudança de Variável

Mensagempor DanielFerreira » Ter Abr 24, 2012 20:31

LuizAquino,
muito obrigado. Encontrei o erro!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}