• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Integral exponencial

[Integral] Integral exponencial

Mensagempor -civil- » Qua Abr 18, 2012 00:12

Estou tentando resolver essa integral:

\int\limits_{0}^1\int\limits_{0}^y~e^{\frac{x^2-y^2}{x^2+y^2}}dxdy

mas nada dá certo.
Pensei em trocar a ordem, mas eu vou ter os mesmo problemas. Se eu decidir fazer substituição de \frac{x^2-y^2}{x^2+y^2} por u mas eu teria que colocar na integral a derivada de u (du), que vai dar algo muito mais complicado. No wolframalpha eu vi umas coisas de integral exponencial (Ei) mas não faço a menor ideia do que isso seja. Alguém tem uma sugestão?
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Integral exponencial

Mensagempor DanielFerreira » Qua Abr 18, 2012 22:33

-civil-,
dê uma olhada na parte de Mudança de Variável
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Integral] Integral exponencial

Mensagempor -civil- » Ter Abr 24, 2012 18:45

Pois é, eu tinha aprendido mas só usava quando as equações formavam retas. Só agora percebi que nesse caso eu também posso usar mudança de variável e calcular o jacobiano.

Obrigada pela dica
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Integral exponencial

Mensagempor DanielFerreira » Ter Abr 24, 2012 20:19

E aí, como ficou sua resposta?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.