f(x)= sen(x)+cos(3x) ,
------------- f(p)=
Resolvendo:




Para determinar a equação:



Mas testando pelo Geogebra, o resultado da equação da reta tangente em (p,f(p)) é:

Que consigo obter quando coloco o ponto P = (
, onde
Então devo usar o pi = 180 da trigononometria, ou a constante pi = 3,1415... em questões desse tipo??? Espero que entendam o q escrevi, Agradeço qualquer ajuda.

como 180º quando aplicas diretamente em funções trigonométricas, ou seja, nos cálculos de sen, cos, tg, cotg, .... Portanto quanto calculas f(
), vais calcular o sen e cos de 
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.