• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Esboço da região de integração

Esboço da região de integração

Mensagempor Cleyson007 » Sáb Abr 14, 2012 10:07

Bom dia a todos!

Calcule a integral iterada \int_{0}^{1}\int_{x}^{3x}(2x+4y)\,dydx e esboce sua região de integração.

Calculando a integral iterada encontrei \frac{20}{3} e fiz o esboço da área de integração. Segue o esboço para avaliação:

Imagem

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1026
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Esboço da região de integração

Mensagempor LuizAquino » Sáb Abr 14, 2012 11:43

Cleyson007 escreveu:Calcule a integral iterada \int_{0}^{1}\int_{x}^{3x}(2x+4y)\,dydx e esboce sua região de integração.

Calculando a integral iterada encontrei \frac{20}{3} e fiz o esboço da área de integração.


Dica

Para conferir a sua reposta, você pode usar um programa. Por exemplo, o SAGE, o Mathematica, o Maple, etc.

Alguns desses programas são disponibilizados também na forma de uma página na internet. É o caso do SAGE Notebook e do Mathematica. Por exemplo, siga os passos abaixo para conferir a sua resolução.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate (integrate 2x + 4y dy  from x to 3x) dx from 0 to 1
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Pronto! Agora basta comparar o resultado com o seu.

Cleyson007 escreveu: Segue o esboço para avaliação:

figura.jpg



O gráfico da reta y = 3x está errado. Note que essa reta deve passar, por exemplo, nos pontos (0, 0) e (1, 3).

Tente refazer o esboço.
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2648
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Esboço da região de integração

Mensagempor Cleyson007 » Dom Abr 15, 2012 10:09

Bom dia Luiz Aquino!

Refiz o esboço da região e usei o programa apenas para conferir.

Nossa, não sei de onde tinha tirado a reta y=3x rsrsrs

Segue novo esboço:

Imagem

Aquino, brigado pela ajuda.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1026
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: