• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Esboço da região de integração

Esboço da região de integração

Mensagempor Cleyson007 » Sáb Abr 14, 2012 10:07

Bom dia a todos!

Calcule a integral iterada \int_{0}^{1}\int_{x}^{3x}(2x+4y)\,dydx e esboce sua região de integração.

Calculando a integral iterada encontrei \frac{20}{3} e fiz o esboço da área de integração. Segue o esboço para avaliação:

Imagem

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1030
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Esboço da região de integração

Mensagempor LuizAquino » Sáb Abr 14, 2012 11:43

Cleyson007 escreveu:Calcule a integral iterada \int_{0}^{1}\int_{x}^{3x}(2x+4y)\,dydx e esboce sua região de integração.

Calculando a integral iterada encontrei \frac{20}{3} e fiz o esboço da área de integração.


Dica

Para conferir a sua reposta, você pode usar um programa. Por exemplo, o SAGE, o Mathematica, o Maple, etc.

Alguns desses programas são disponibilizados também na forma de uma página na internet. É o caso do SAGE Notebook e do Mathematica. Por exemplo, siga os passos abaixo para conferir a sua resolução.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate (integrate 2x + 4y dy  from x to 3x) dx from 0 to 1
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Pronto! Agora basta comparar o resultado com o seu.

Cleyson007 escreveu: Segue o esboço para avaliação:

figura.jpg



O gráfico da reta y = 3x está errado. Note que essa reta deve passar, por exemplo, nos pontos (0, 0) e (1, 3).

Tente refazer o esboço.
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2648
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Esboço da região de integração

Mensagempor Cleyson007 » Dom Abr 15, 2012 10:09

Bom dia Luiz Aquino!

Refiz o esboço da região e usei o programa apenas para conferir.

Nossa, não sei de onde tinha tirado a reta y=3x rsrsrs

Segue novo esboço:

Imagem

Aquino, brigado pela ajuda.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1030
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}