• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Lucro máximo

Lucro máximo

Mensagempor profmatematica » Qui Mar 29, 2012 00:01

Uma determinada utilidade tem custo fixo de produção igual a 1000,00 e custo unitário de 10,00. A sua curva função de demanda é dada por p=110-q, onde q é a quantidade demandada e produzida com variação de 0 a 50 e p é o preço unitário de venda.
DETERMINE UTILIZANDO DERIVADA, QUA É A QUANTIDADE Q QUE DETERMINA O LUCRO MÁXIMO
bom eu sei que a função lucro é dada por rt(x) - ct(x) e que o lucro máximo é a derivada desse lucro igual a zero, sei também que c(x)= 1000 +110x porém estou com dificuldade de montar a função receita total. Alguém poderia me ajudar?
:-)
profmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Sex Ago 27, 2010 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Lucro máximo

Mensagempor LuizAquino » Qui Mar 29, 2012 12:52

profmatematica escreveu:Uma determinada utilidade tem custo fixo de produção igual a 1000,00 e custo unitário de 10,00. A sua curva função de demanda é dada por p=110-q, onde q é a quantidade demandada e produzida com variação de 0 a 50 e p é o preço unitário de venda.
DETERMINE UTILIZANDO DERIVADA, QUA É A QUANTIDADE Q QUE DETERMINA O LUCRO MÁXIMO


profmatematica escreveu:bom eu sei que a função lucro é dada por rt(x) - ct(x) e que o lucro máximo é a derivada desse lucro igual a zero, sei também que c(x)= 1000 +110x porém estou com dificuldade de montar a função receita total. Alguém poderia me ajudar?


Note que q é a quantidade demandada e produzida (sendo que 0 < q < 50).

O custo total para produzir essa quantidade q será: ct(q) = 1000 + 10q.

O preço unitário p de cada produto é dado por p = 110 - q. Desse modo, a receita total será: rt(q) = (110 - q)q. Aqui lembre-se que:

Receita Total = (Preço Unitário)*(Quantidade Vendida)

Agora basta terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Lucro máximo

Mensagempor profmatematica » Qui Mar 29, 2012 13:15

BELEZA COLEGA OBRIGADA
:-)
profmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Sex Ago 27, 2010 13:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59