• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Integral de função ímpar

[Integral] Integral de função ímpar

Mensagempor -civil- » Sex Mar 23, 2012 18:31

Estava tentando fazer a integral dupla de f(x,y) = x^5cos(y^3) no retângulo y \geq x^2, x^2 + y^2 \geq 2

Eu não consegui resolver desenvolvendo a integral e na resolução diz apenas que a função é ímpar na variável x e o resultado da integral é zero.

Eu consigo entender que a integral da uma função ímpar centrada na origem é zero (Se ela tem a mesma simetria). Mas como eu descubro que a função f(x,y) = x^5cos(y^3) é ímpar se eu não faço a menor ideia de como é o gráfico dela? Eu vou ter que seguir todo aquele processo de esboço de gráfico?

Um outro jeito de provar que a função é ímpar é verificar se f(-x) = -f(x). No caso, como fica a fórmula para duas variáveis?
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Integral de função ímpar

Mensagempor LuizAquino » Sex Mar 23, 2012 22:58

-civil- escreveu:Estava tentando fazer a integral dupla de f(x,\,y) = x^5\cos(y^3) no retângulo y \geq x^2, x^2 + y^2 \geq 2


A região de integração não seria y \geq x^2, x^2 + y^2 \leq 2 ?

Além disso, note que essa região (e nem a que você escreveu antes) não é um "retângulo".


-civil- escreveu:Um outro jeito de provar que a função é ímpar é verificar se f(-x) = -f(x). No caso, como fica a fórmula para duas variáveis?


Quando ele diz que "(...) a função é ímpar na variável x (...)", ele está dizendo que f(-x, y) = -f(x, y).
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2650
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.