• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Integral de função ímpar

[Integral] Integral de função ímpar

Mensagempor -civil- » Sex Mar 23, 2012 18:31

Estava tentando fazer a integral dupla de f(x,y) = x^5cos(y^3) no retângulo y \geq x^2, x^2 + y^2 \geq 2

Eu não consegui resolver desenvolvendo a integral e na resolução diz apenas que a função é ímpar na variável x e o resultado da integral é zero.

Eu consigo entender que a integral da uma função ímpar centrada na origem é zero (Se ela tem a mesma simetria). Mas como eu descubro que a função f(x,y) = x^5cos(y^3) é ímpar se eu não faço a menor ideia de como é o gráfico dela? Eu vou ter que seguir todo aquele processo de esboço de gráfico?

Um outro jeito de provar que a função é ímpar é verificar se f(-x) = -f(x). No caso, como fica a fórmula para duas variáveis?
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Integral] Integral de função ímpar

Mensagempor LuizAquino » Sex Mar 23, 2012 22:58

-civil- escreveu:Estava tentando fazer a integral dupla de f(x,\,y) = x^5\cos(y^3) no retângulo y \geq x^2, x^2 + y^2 \geq 2


A região de integração não seria y \geq x^2, x^2 + y^2 \leq 2 ?

Além disso, note que essa região (e nem a que você escreveu antes) não é um "retângulo".


-civil- escreveu:Um outro jeito de provar que a função é ímpar é verificar se f(-x) = -f(x). No caso, como fica a fórmula para duas variáveis?


Quando ele diz que "(...) a função é ímpar na variável x (...)", ele está dizendo que f(-x, y) = -f(x, y).
Imagem Imagem Imagem Imagem

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2648
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.