• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limite envolvendo modulo

limite envolvendo modulo

Mensagempor matmatco » Qui Mar 22, 2012 23:18

não estou conseguindo entender como sair desse modulo\lim_{x\to3 \right|}=\frac{\left|x-3 \right|}{x-3}
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: limite envolvendo modulo

Mensagempor fraol » Qui Mar 22, 2012 23:35

Esse limite não existe.

Observe que o numerador é um número positivo.
Já o denominador é um número positivo se x tende a 3 pela direita
ou é um número negativo se x tende a 3 pela esquerda.

Em outras palavras, os limites laterais são diferentes.

Você saberia dizer qual é o limite quando x tende a 3 pela direita e quando x tende a 3 pela esquerda?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: limite envolvendo modulo

Mensagempor matmatco » Sex Mar 23, 2012 09:21

não
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: limite envolvendo modulo

Mensagempor fraol » Seg Mar 26, 2012 19:45

Observe:

Quando x tende a 3 pela esquerda, x < 3, x - 3 é um número negativo. Então:

\lim_{x\to3^- \right|}=\frac{\left|x-3 \right|}{x-3} = -1

Quando x tende a 3 pela direita, x > 3, x - 3 é um número positivo. Então:

\lim_{x\to3^+ \right|}=\frac{\left|x-3 \right|}{x-3} = 1

É por isso que o limite pedido não existe pois, os limites laterais são diferentes.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: limite envolvendo modulo

Mensagempor matmatco » Ter Mar 27, 2012 10:08

entendi..muito obrigado
abraços
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: limite envolvendo modulo

Mensagempor LuizAquino » Ter Mar 27, 2012 13:01

fraol escreveu:Observe:

Quando x tende a 3 pela esquerda, x < 3, x - 3 é um número negativo. Então:

\lim_{x\to3^- \right|}=\frac{\left|x-3 \right|}{x-3} = -1

Quando x tende a 3 pela direita, x > 3, x - 3 é um número positivo. Então:

\lim_{x\to3^+ \right|}=\frac{\left|x-3 \right|}{x-3} = 1

É por isso que o limite pedido não existe pois, os limites laterais são diferentes.


Apenas uma observação. A notação correta é:

\lim_{x\to3^- \right|} \frac{\left|x-3 \right|}{x-3}

\lim_{x\to3^+ \right|} \frac{\left|x-3 \right|}{x-3}

Note que na sua escrita você colocou um "=" fora do lugar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: limite envolvendo modulo

Mensagempor fraol » Ter Mar 27, 2012 13:06

Ok. Foi um lapso na digitação. Grato.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: limite envolvendo modulo

Mensagempor LuizAquino » Ter Mar 27, 2012 13:14

fraol escreveu:Ok. Foi um lapso na digitação. Grato.


No seu caso eu imaginei isso.

Mas sempre é bom chamar a atenção quanto a escrita matemática.

Existem muitos estudantes que cometem o mesmo equívoco de escrever esse "=" no lugar errado.

Também foi o caso de matmatco:

matmatco escreveu:não estou conseguindo entender como sair desse modulo \lim_{x\to3 \right|}=\frac{\left|x-3 \right|}{x-3}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.