• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda na resolução de limite

Ajuda na resolução de limite

Mensagempor harreb » Qui Mar 22, 2012 06:42

Estou com dificuldade de resolver o limite abaixo:

Calcule, usando a definição

f'({x}_{0}) = \lim_{x\rightarrow0} \frac{f(x) - f({x}_{0})}{x - {x}_{0}}

a derivada

f'(1), se f(x) = \frac{1}{x}
harreb
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 22, 2012 06:20
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Eletrônica
Andamento: formado

Re: Ajuda na resolução de limite

Mensagempor joaofonseca » Qui Mar 22, 2012 11:09

Antes de mais a expressão que apresentas traduz a definição de derivada num dado ponto. Neste caso x=0.

É verdade que quando se tenta comutar a expressão com os devidos valores, nos deparamos com a situação de \frac{1}{0}.
Rapidamente paramos para pensar e reconhecemos uma daquelas funções elementares de cujo gráfico todos devemos de memorizar. Neste caso temos f(x)=\frac{1}{x}.
Através de um simulador gráfico podemos vizualizar que esta função é continua em todos os pontos exeto em x=0. Logo se não é continua, não é diferenciavel. Não é continua porque os limites laterais quando x \to 0 não são iguais.
Para ser diferenciavel é necessário que seja continua e que o declive da reta tangente(derivada) seja igual, quer x \to 0 pela esquerda, quer x \to 0 pela direita.
Logo concluímos que está função não tem derivada em x=0.

Pela definição de derivada:

f(x)'=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}

Obtemos:

f(x)'=-\frac{1}{x^2} cujo o dominio é R\{0}.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Ajuda na resolução de limite: ok

Mensagempor harreb » Sex Mar 23, 2012 06:43

Obrigado pela ajuda
harreb
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 22, 2012 06:20
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Eletrônica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: