por emsbp » Sex Mar 16, 2012 08:45
Bom dia.
O enunciado do exercício é: calcule a derivada total da seguinte função:

, sendo y =a sen(x) e z= cos(x), com
a constante. Está indicado como solução

.
No entanto, segundo a minha resolução, não consigo chegar ao resultado apresentado.
Segue agora como resolvi:

.
ora,




Logo,

Muito provavelmente, é necessário fazer simplificações e/ou substituições para chegar à solução dada, mas de momento não estou a ver como.
Peço ajuda.
Obrigado!
-
emsbp
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Sex Mar 09, 2012 11:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Informática
- Andamento: formado
por LuizAquino » Sex Mar 16, 2012 12:15
emsbp escreveu:Calcule a derivada total da seguinte função:

, sendo y =a sen(x) e z= cos(x), com
a constante. Está indicado como solução

.
emsbp escreveu: No entanto, segundo a minha resolução, não consigo chegar ao resultado apresentado.
Segue agora como resolvi:

.
Aqui há um erro. Note que a função u depende de três variáveis: x, y e z. Além disso, temos que cada variável dessa depende de x. Ou seja, é como se tivéssemos x=f(x), y=g(x) e z=h(x).
Dessa forma, temos que:

Agora efetue os cálculos e você obterá a reposta correta.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por emsbp » Sex Mar 16, 2012 18:38
Muito obrigado!
Realmente "escapou-me" derivar em função de x.
-
emsbp
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Sex Mar 09, 2012 11:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática/Informática
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivadas- regra da cadeia
por genicleide » Qua Abr 20, 2011 14:28
- 4 Respostas
- 4603 Exibições
- Última mensagem por genicleide

Qua Abr 20, 2011 19:44
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADAS] Regra da Cadeia
por pauloguerche » Qua Set 07, 2011 17:19
- 4 Respostas
- 3784 Exibições
- Última mensagem por LuizAquino

Qui Set 08, 2011 10:50
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADAS] Regra Da Cadeia
por guigoraphael » Qua Ago 07, 2013 21:17
- 0 Respostas
- 1065 Exibições
- Última mensagem por guigoraphael

Qua Ago 07, 2013 21:17
Cálculo: Limites, Derivadas e Integrais
-
- Regra da cadeia para derivadas parciais
por Maisa_Rany » Qua Nov 07, 2018 16:47
- 2 Respostas
- 9234 Exibições
- Última mensagem por Maisa_Rany

Qui Nov 08, 2018 16:33
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo 2] Regra da cadeia em derivadas parciais
por NavegantePI » Sáb Jun 25, 2016 18:05
- 0 Respostas
- 1908 Exibições
- Última mensagem por NavegantePI

Sáb Jun 25, 2016 18:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.