• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda com integral envolvendo tgx e sen^2x

Ajuda com integral envolvendo tgx e sen^2x

Mensagempor kryzay » Qua Mar 07, 2012 09:02

Fala galera blz?

Tava resolvendo alguns exercícios e me deparei com a seguinte integral:

\int{\frac{tgx dx}{sen^2x}}

A professora fez isso:

\int{\frac{senx dx}{cosx*sen^2x}}

\int{\frac{senx dx}{cosx*(1-cos^2x)}}

Até ai tudo bem mas olhem o que me deixou encabulado:

\int{\frac{senx dx}{cosx}} - \int{\frac{senx dx}{cos^3x}}

Não aceitei muito bem isso que ela fez. Isso é possível galera?

Obrigado.
kryzay
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Jul 25, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Ajuda com integral envolvendo tgx e sen^2x

Mensagempor LuizAquino » Qua Mar 07, 2012 09:18

kryzay escreveu:\int{\frac{senx dx}{cosx*(1-cos^2x)}}

Até ai tudo bem mas olhem o que me deixou encabulado:

\int{\frac{senx dx}{cosx}} - \int{\frac{senx dx}{cos^3x}}

Não aceitei muito bem isso que ela fez. Isso é possível galera?


Não é possível.

Tipicamente, temos que:

\dfrac{A}{B-C} \neq \dfrac{A}{B} - \frac{A}{C}

Por outro lado, temos que:

\dfrac{B-C}{A} = \dfrac{B}{A} - \frac{C}{A}
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda com integral envolvendo tgx e sen^2x

Mensagempor kryzay » Qua Mar 07, 2012 09:40

Sim sim Luiz, isso que eu pensei.

Porém você sabe alguma solução para resolver a integral?

O máximo que cheguei foi:

\int \frac{dx}{senx*cosx}

A partir daí garrei. =/
kryzay
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Jul 25, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Ajuda com integral envolvendo tgx e sen^2x

Mensagempor LuizAquino » Qua Mar 07, 2012 10:16

kryzay escreveu:Sim sim Luiz, isso que eu pensei.

Porém você sabe alguma solução para resolver a integral?

O máximo que cheguei foi:

\int \frac{dx}{senx*cosx}

A partir daí garrei. =/


Volte ao seguinte ponto:

\int \dfrac{\textrm{sen}\,x}{\cos x\left(1-\cos^2 x\right)}\, dx

Use a substituição u = \cos x e du = -\,\textrm{sen}\, x \, dx :

\int \dfrac{\textrm{sen}\,x}{\cos x\left(1-\cos^2 x\right)}\, dx = \int -\dfrac{1}{u\left(1-u^2\right)}\, du

Use a técnica de frações parciais:

\int -\dfrac{1}{u\left(1-u^2\right)}\, du = -\frac{1}{2}\int \dfrac{2}{u} - \frac{1}{1+u} + \frac{1}{1-u} \, du

Agora tente terminar a partir daí.

Observação

Para revisar a técnica de frações parciais que foi utilizada, eu gostaria de recomendar que você assista a videoaula "29. Cálculo I - Integração por Frações Parciais (Caso I e II)". Ela está disponível em meu canal no YouTube:

http://www.youtube.com/LCMAquino
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Ajuda com integral envolvendo tgx e sen^2x

Mensagempor kryzay » Qua Mar 07, 2012 15:34

Muito obrigado Luiz. Embora eu não conheça a técnica de frações parciais, você já resolveu minha dúvida.

Hoje tenho aula com a professora, e vou retomar essa questão com ela.
Depois eu posto aqui o que ela falar.

Parabéns Luiz pelas aulas e pela dedicação.
kryzay
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Jul 25, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}