por Giu » Qua Fev 08, 2012 16:08
não tenho nenhum resolvido com módulo e pode ser que caia na prova com módulo.
Fiz dessa maneira: estabeleci uma condição para

=x , quando x>0 e

= (x+1), quando x>-1,
e

= -x, quando x<0 e

= -(x+1), quando x< -1.
Obtendo dois resultados.
Alguma dica aí
-
Giu
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Fev 08, 2012 15:38
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Quimica Licenciatura
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4342 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- Integral do módulo?
por Questioner » Dom Mai 16, 2010 18:15
- 2 Respostas
- 32692 Exibições
- Última mensagem por LuizAquino

Qui Abr 21, 2011 09:38
Cálculo: Limites, Derivadas e Integrais
-
- Integral com módulo.
por adecris » Sex Nov 11, 2011 13:01
- 1 Respostas
- 4426 Exibições
- Última mensagem por LuizAquino

Sex Nov 11, 2011 17:12
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Módulo
por iagoyotsui » Ter Set 24, 2013 19:18
- 1 Respostas
- 2107 Exibições
- Última mensagem por Russman

Ter Set 24, 2013 21:43
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo Integral] Integral Definida
por ARCS » Sáb Fev 02, 2013 21:37
- 2 Respostas
- 3671 Exibições
- Última mensagem por e8group

Sáb Fev 02, 2013 22:13
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.