• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integração por Partes] Integral indefinida...

[Integração por Partes] Integral indefinida...

Mensagempor luiz_henriquear » Qui Dez 22, 2011 17:40

\int_{}^{} x^3. sen 4x  dx é esse o problema que tenho que resolver por partes.
Derivei uma vez e deu isso:sen 4x . \frac{x^4}{4} - \int_{}^{} x^4 . cos 4x.dx. .
Daí falaram p mim que tinha q continuar derivando daí deu isso:=cos 4x .\frac{x^5}{5} - \int_{}^{} \frac{x^5}{5}. 4. -sen (4x) dx

E daí o q faço kkk?
luiz_henriquear
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Out 24, 2011 20:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia civil
Andamento: cursando

Re: [Integração por Partes] Integral indefinida...

Mensagempor LuizAquino » Qui Dez 22, 2011 21:58

luiz_henriquear escreveu:\int_{}^{} x^3. sen 4x dx é esse o problema que tenho que resolver por partes.


Para estudar a resolução dessa integral, siga o procedimento abaixo.

  1. Acesse a página: http://www.wolframalpha.com/
  2. No campo de entrada, digite:
    Código: Selecionar todos
    integrate (x^3)sin(4x) dx
  3. Clique no botão de igual ao lado do campo de entrada.
  4. Após a integral ser calculada, clique no botão "Show steps" ao lado do resultado.
  5. Pronto! Agora basta estudar a resolução e comparar com a sua.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)