• Anúncio Global
    Respostas
    Exibições
    Última mensagem

teorema do valor medio

teorema do valor medio

Mensagempor matmatco » Seg Nov 14, 2011 10:18

olá, nao estou entendendo como faço pra saber qual funçao satisfaz o teorema do valor medio por exemplo

f(x)=\frac{1}{x} quando a =2 e b=3 como sei que ela nao satisfaz o teorema?? como faço pra descobrir de maneira rapida?
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: teorema do valor medio

Mensagempor LuizAquino » Seg Nov 14, 2011 12:34

matmatco escreveu:olá, nao estou entendendo como faço pra saber qual funçao satisfaz o teorema do valor medio por exemplo

f(x)=\frac{1}{x} quando a =2 e b=3 como sei que ela nao satisfaz o teorema?? como faço pra descobrir de maneira rapida?


Leia atentamente o enunciado do Teorema do Valor Médio:

Se f é uma função contínua em [a, b] e diferenciável em (a, b), então existe algum ponto c em (a, b) tal que f^\prime(c)=\frac{f(b)-f(a)}{b-a} .

As hipóteses do teorema são:
(i) f é contínua em [a, b];
(ii) f é diferenciável em (a, b).

Portanto, para saber se uma função atende ao teorema basta verificar essas duas hipóteses.

Considere então a função f(x)=\frac{1}{x} e o intervalo [2, 3]. Ela atende as duas hipóteses do teorema:
(i) f é uma função contínua em [2, 3];
(ii) f é diferenciável em (2, 3).

Portanto, ela satisfaz o teorema nesse caso.

Considere agora essa mesma função, mas no intervalo [-1, 1]. Ela não atende as hipóteses nesse intervalo, já que f é descontínua em x = 0. Portanto, nesse caso ela não satisfaz o teorema.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: teorema do valor medio

Mensagempor matmatco » Seg Nov 14, 2011 13:21

entao eu tenho que pegar valores entre o intervalo como no exemplo [2,3] e verificar se ele tbm é derivavel é isso??
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: teorema do valor medio

Mensagempor LuizAquino » Seg Nov 14, 2011 20:46

matmatco escreveu:entao eu tenho que pegar valores entre o intervalo como no exemplo [2,3] e verificar se ele tbm é derivavel é isso??


Você precisa saber reconhecer quando uma função é contínua e quando é derivável. Se você ainda não está bem treinado nessa parte, então eu recomendo que você faça uma revisão sobre esses dois conceitos.

Por exemplo, apenas analisando a expressão da função f(x) = \frac{x+1}{x^2-4}, você precisa ser capaz de reconhecer que ela é contínua e derivável para todo x real, exceto para x = -2 e x = 2. Sendo assim, para qualquer intervalo [a, b] que não contenha nem -2 e nem 2, essa função irá atender ao Teorema do Valor Médio nesse intervalo.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?