• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Declive da reta secante

Declive da reta secante

Mensagempor joaofonseca » Ter Nov 08, 2011 12:04

Tenho estado a estudar uma abordagem às derivadas do ponto de vista do declive da reta secante a dois pontos.Calculando o limite desse mesmo declive num ponto.
\lim_{x \mapsto a}=\frac{f(x)-f(a)}{x-a}

Quando x \mapsto a o declive da reta secante aproxima-se do declive da reta tangente a a.Ou seja do valor da derivada no ponto x=a.

Quando o calculo do limite não corre bem, as coisas começam a complicar-se!
Seja a função f(x)=2x^2-ln(x). Calcule-se o declive da reta tangente no ponto (1,2), utilizando a primeira formula:

\lim_{x \mapsto 1}\frac{2x^2-ln(x)-2}{x-1}=

\lim_{x \mapsto 1}\frac{2(x^2-1)-ln(x)}{x-1}=

\lim_{x \mapsto 1}\frac{2(x-1)(x+1)-ln(x)}{x-1}=

\lim_{x \mapsto 1}2(x+1)-ln(x)=2 \cdot 2-ln(1)= 4-0=4

Seria de concluir que a derivada da função no ponto x=1 seria 4!!!
Mas quando calculo a derivada através das regras de diferenciação obtenho:

f'(x)=4x -\frac{1}{x}

ou seja,

f'(1)=4-1=3

Em qual deles errei?
Após algumas simulações gráficas, verifiquei que foi no limite que errei, mas por mais que me esforce não sei onde.Podem ajudar-me?
Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Declive da reta secante

Mensagempor MarceloFantini » Ter Nov 08, 2011 16:31

Você dividiu apenas o lado direito por x-1, e não tudo. O resultado deveria ser o limite de 2(x+1) - \frac{\ln x}{x-1}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Declive da reta secante

Mensagempor joaofonseca » Ter Nov 08, 2011 17:30

Obrigado! Não estava mesmo exergando.
No entanto mesmo assim o resultado do limite continua na mesma, pois \frac{ln(x)}{x-1} resulta em \frac{0}{0} quando se substituí x por 1.
Foi então, que após alguma pesquisa, e no seguimento da definição de derivada que estou a utilizar, descobri:

f'(1)=\frac{f(x)-f(1)}{x-1}=\frac{ln(x)-ln(1)}{x-1}=\frac{ln(x)}{x-1}

Ou seja a expressão reflete a derivada da função ln(x) no ponto x=1.E como sabemos, será igual a 1.
Assim:

\lim_{x \mapsto 1}\frac{2x^2-ln(x)-(2-ln(1))}{x-1}=(...)=\lim_{x \mapsto 1}2(x+1)-\lim_{x \mapsto 1}\frac{ln(x)}{x-1}=2 \cdot 2-1=3

Agora sim, coincide com o valor que obtive através das regras de diferenciação!!!!
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Declive da reta secante

Mensagempor LuizAquino » Sex Nov 11, 2011 10:30

joaofonseca escreveu:Foi então, que após alguma pesquisa, e no seguimento da definição de derivada que estou a utilizar, descobri:
f'(1)=\frac{f(x)-f(1)}{x-1}=\frac{ln(x)-ln(1)}{x-1}=\frac{ln(x)}{x-1}


Correção:

f^\prime (1)=\lim_{x\to 1} \frac{f(x)-f(1)}{x-1} = \lim_{x\to 1} \frac{\ln x - \ln 1}{x-1}= \lim_{x\to 1} \frac{\ln x}{x-1}

Para calcular esse limite, faça a substituição u = x - 1 . Como x\to 1, teremos que u \to 0 . Portanto, podemos escrever:

f^\prime(1) = \lim_{u\to 0} \frac{\ln (u+1)}{u}

Note que podemos ainda escrever:

f^\prime(1) = \lim_{u\to 0} \frac{1}{u} \ln (u+1)

Utilizando propriedades de logaritmo, temos que:

f^\prime(1) = \lim_{u\to 0}  \ln (u+1)^{\frac{1}{u}}

Como a função logaritmo natural é contínua em u+1 quando u\to 0, o limite poderá "entrar" na função:

f^\prime(1) =\ln \left[\lim_{u\to 0}   (u+1)^{\frac{1}{u}}\right]

Lembrando-se do limite exponencial fundamental, temos que:

f^\prime(1) = \ln e

Portanto, como já era esperado, obtemos que:

f^\prime(1) = 1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.