• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] derivada de funções trigonometricas

[LIMITE] derivada de funções trigonometricas

Mensagempor beel » Qua Set 21, 2011 13:09

Qual a derivada f'(a) de sen(2x), sendo sen (2x) = 2sen(x).cos(x)?

Meu raciocínio foi:

f'(a) = (2sen(x))'.cos(x) + (2sen(x)).(cos(x))' =
2(cos(x)).cos(x) + 2.sen(x)(-sen (x))

2cos(x)² - 2sen(x)²

ta correto?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] derivada de funções trigonometricas

Mensagempor Neperiano » Qua Set 21, 2011 15:11

Ola

A derivada fica assim

2cosx.cosx + 2senx.-senx

2cosx^2 -2senx^2

Está correto sim

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [LIMITE] derivada de funções trigonometricas

Mensagempor LuizAquino » Qua Set 21, 2011 16:51

isanobile escreveu:2cos(x)² - 2sen(x)²


Neperiano escreveu:2cosx^2 -2senx^2


O correto é escrever:

f^\prime(a) = 2\cos^2 a  - 2\,\textrm{sen}\,^2 a

Podemos ainda simplificar a resposta aplicando a identidade trigonométrica \cos 2\alpha = \cos^2 \alpha - \,\textrm{sen}\,^2\alpha. Desse modo, podemos reescrever o resultado como:

f^\prime(a) = 2\cos 2a

Observação
Cuidado para não confundir \cos^2 \alpha com \cos \alpha^2 e nem \textrm{sen}\,^2 \alpha com \textrm{sen}\, \alpha^2 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [LIMITE] derivada de funções trigonometricas

Mensagempor beel » Dom Out 16, 2011 17:07

Ok,obrigada.
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.