• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITE] assintota vertical

[LIMITE] assintota vertical

Mensagempor beel » Seg Set 05, 2011 12:58

Para achar uma assintota vertical, sempre é preciso fazer os limites laterias?
beel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 172
Registrado em: Sex Ago 26, 2011 13:14
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [LIMITE] assintota vertical

Mensagempor Neperiano » Seg Set 05, 2011 13:12

Ola

Você fazue x tende a alguma numero, e o y vai tender a infinto, ou a menos infinito

É sim pode fazer os limites laterais

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [LIMITE] assintota vertical

Mensagempor Jhonata » Dom Mai 27, 2012 00:17

Bem, é mais comum analisar assíntotas verticais em funções racionais do tipo: f(x) =\frac{P(x)}{Q(x)}, onde P(x) e Q(x) são polinômios. Nesse caso, em particular, é comum e muito prático analisar o domínio da função, e se existe algum ponto x onde a função não está definida no domínio, então esse ponto supostamente será uma assíntota vertical. É sempre indispensável e necessário fazer a verificação dessa observação pelos limites laterais no(s) ponto(s) em que f não está definida, e se f(x) tende a menos ou mais infinito, conclui-se que, de fato, aquele ponto é uma assíntota vertical.
OBS: Há casos que é possível simplificar a função e observar o domínio pode nem ser sempre útil ou até desnecessário.

Por exemplo, temos a função f(x) = \frac{x+3}{x-2}.

Podemos observar que no ponto x = 2, f(x) não está definido e se usarmos a ideia intuitiva de limites, tomando valores arbitrários para x bem próximos de 2, mas diferente de 2. Isto é, x tende a 2, mas é diferente de 2 por ambos os lados, vemos que f(x) tente a +infinito pela direita e -infinito pela esquerda.
Experimente fazendo, por exemplo, x = 1.9999 (um valor de x pela esquerda) e x = 2.0001 (um valor de x pela direita)... Encontrará números muito grandes, negativos pela esquerda e positivos pela direita. (:

Espero que essa informação ajude de algum modo.
Abraço.



O_O Alguns minutos depois, vi que o tópico é velho... Bem, de qualquer modo, não apagarei meu post... De repente ajuda alguém. D:

K
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.