• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Integral da secante

[Cálculo] Integral da secante

Mensagempor ARCS » Ter Ago 23, 2011 18:15

Sempre que queremos calcular a integral da secante temos que multliplicar a secante por (secx+tgx) / (secx+tgx). Existe alguma forma de deduzir este fator ou terei que memoriza-lo mesmo?
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Cálculo] Integral da secante

Mensagempor Neperiano » Ter Ago 23, 2011 19:36

Ola

Você pode transforma-la em 1/cos x, mas acho que isso naum ajuda muito

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [Cálculo] Integral da secante

Mensagempor LuizAquino » Ter Ago 23, 2011 23:02

ARCS escreveu:Sempre que queremos calcular a integral da secante temos que multliplicar a secante por (secx+tgx) / (secx+tgx). Existe alguma forma de deduzir este fator ou terei que memoriza-lo mesmo?


Essa estratégia, bem esperta, é realizada já pensando na utilização da técnica de substituição no passo seguinte.

A forma de "deduzi-la" seria exatamente pensando na questão: o que devo multiplicar para depois poder usar a técnica de substituição?

Comparado a quem teve pela primeira vez essa ideia, que foi bastante criativa, o nosso trabalho é bem simples: aprendê-la (que é diferente de decorá-la).

Neperiano escreveu:Você pode transforma-la em 1/cos x, mas acho que isso naum ajuda muito

Sim, ajuda.

\int \sec x\, dx = \int \frac{1}{\cos x}\, dx = \int \frac{\cos x}{\cos^2 x}\, dx = \int \frac{\cos x}{1 -\,\textrm{sen}^2\, x}\, dx

Fazendo a substituição u = \,\textrm{sen}\,x e du = \cos x\, dx, obtemos

\int \sec x\, dx = \int \frac{1}{1 - u^2}\, du = \frac{1}{2}\int \frac{1}{1 - u} + \frac{1}{1 + u}\, du = \frac{1}{2}(-\ln |1 - u| + \ln|1+u|) + c = \ln\sqrt{\left|\frac{1+u}{1-u}\right|} + c = \ln\sqrt{\left|\frac{1+\,\textrm{sen}\,x}{1-\,\textrm{sen}\,x}\right|} + c

Para deixar a família de primitivas no formato canônico, faremos o desenvolvimento abaixo.
\int \sec x\, dx = \ln\sqrt{\left|\frac{1+\,\textrm{sen}\,x}{1-\,\textrm{sen}\,x}\right|} + c = \ln\sqrt{\left|\frac{(1+\,\textrm{sen}\,x)(1+\,\textrm{sen}\,x)}{(1-\,\textrm{sen}\,x)(1+\,\textrm{sen}\,x)}\right|} + c = \ln \left|\frac{1+\,\textrm{sen}\,x}{\cos x}\right| + c = \ln |\sec x + \,\textrm{tg}\,x| + c
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?