por killerkill » Dom Ago 21, 2011 14:13
Estava fazendo exercícios aqui me veio uma dúvida. Antes vou mostrar a questão aqui pra poder me explicar melhor.
![\lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right) \lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right)](/latexrender/pictures/2325e98bef91714b9c772acb2e8b39d7.png)
a resolução fica assim:
![\lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right). \frac{\left(\sqrt[2]{9x^2+x }+3x \right)}{\left(\sqrt[2]{9x^2+x }+3x \right)}= \frac{1}{6} \lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right). \frac{\left(\sqrt[2]{9x^2+x }+3x \right)}{\left(\sqrt[2]{9x^2+x }+3x \right)}= \frac{1}{6}](/latexrender/pictures/9dd8ccf67ab708c77b4d2a1e6b2f01d3.png)
Porquê eu preciso fazer esse trabalho de multiplicar toda expressão por
digo isso porque após esse passo, eu terei de dividir o numerador e denominador por x correto? Se eu,antes de multiplicar a minha equaçao por esse termo ja dividisse tudo por x ficaria assim:
![\frac{{\left(\sqrt[2]{9x^2+x }-3x \right)}}{x}= \frac{\sqrt[2]{9x^2+x}}{x}-\frac{3x}{x}= \sqrt[2]{\frac{9x^2+x}{x^2}}-3= 3-3=0 \frac{{\left(\sqrt[2]{9x^2+x }-3x \right)}}{x}= \frac{\sqrt[2]{9x^2+x}}{x}-\frac{3x}{x}= \sqrt[2]{\frac{9x^2+x}{x^2}}-3= 3-3=0](/latexrender/pictures/3be728c25c18f41af6183156bd5b7be2.png)
A resposta é errada. Todavia, não consigo enxergar no caminho a impossibilidade de fazer esse cálculo dessa maneira.
Por fim, oque então me faz pensar que é necessário fazer:
![\lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right). \frac{\left(\sqrt[2]{9x^2+x }+3x \right)}{\left(\sqrt[2]{9x^2+x }+3x \right)}= \frac{1}{6} \lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right). \frac{\left(\sqrt[2]{9x^2+x }+3x \right)}{\left(\sqrt[2]{9x^2+x }+3x \right)}= \frac{1}{6}](/latexrender/pictures/9dd8ccf67ab708c77b4d2a1e6b2f01d3.png)
-
killerkill
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Ter Ago 09, 2011 22:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eg. Elétrica
- Andamento: cursando
por LuizAquino » Dom Ago 21, 2011 20:59
killerkill escreveu:![\lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right) \lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right)](/latexrender/pictures/2325e98bef91714b9c772acb2e8b39d7.png)
a resolução fica assim:
![\lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right). \frac{\left(\sqrt[2]{9x^2+x }+3x \right)}{\left(\sqrt[2]{9x^2+x }+3x \right)}= \frac{1}{6} \lim_{x\rightarrow\infty}\left(\sqrt[2]{9x^2+x }-3x \right). \frac{\left(\sqrt[2]{9x^2+x }+3x \right)}{\left(\sqrt[2]{9x^2+x }+3x \right)}= \frac{1}{6}](/latexrender/pictures/9dd8ccf67ab708c77b4d2a1e6b2f01d3.png)
Porquê eu preciso fazer esse trabalho de multiplicar toda expressão por
Em primeiro lugar, você não
apenas multiplicou tudo por

. Você multiplicou e dividiu tudo por isso.
Em segundo lugar, a ideia básica é reescrever o limite de modo a aparecer termos como

, pois desse modo podemos usar o fato de que se

, então

.
killerkill escreveu:Se eu,antes de multiplicar a minha equaçao por esse termo ja dividisse tudo por x ficaria assim:
![\frac{{\left(\sqrt[2]{9x^2+x }-3x \right)}}{x}= \frac{\sqrt[2]{9x^2+x}}{x}-\frac{3x}{x}= \sqrt[2]{\frac{9x^2+x}{x^2}}-3= 3-3=0 \frac{{\left(\sqrt[2]{9x^2+x }-3x \right)}}{x}= \frac{\sqrt[2]{9x^2+x}}{x}-\frac{3x}{x}= \sqrt[2]{\frac{9x^2+x}{x^2}}-3= 3-3=0](/latexrender/pictures/3be728c25c18f41af6183156bd5b7be2.png)
A resposta é errada.
É claro que está errado! Por exemplo, veja que

(com x não nulo e diferente de 1). Por outro lado, temos que

(com x não nulo).
Isso significa que para não alterar a expressão você deveria multiplicar e dividir tudo por x. Entretanto, mesmo que nesse exercício você fizesse isso, veria que não ajudaria na solução, pois acabaria em uma indeterminação do tipo

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limites no infinito]Limite no infinito de um ponto finito
por moyses » Ter Ago 30, 2011 12:45
- 3 Respostas
- 3360 Exibições
- Última mensagem por LuizAquino

Ter Ago 30, 2011 18:57
Cálculo: Limites, Derivadas e Integrais
-
- [limites] limite no infinito
por baloso » Qua Abr 30, 2014 17:19
- 3 Respostas
- 1971 Exibições
- Última mensagem por Russman

Qui Mai 01, 2014 15:26
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] limites no infinito com raízes
por camila_braz » Dom Jun 11, 2017 11:42
- 0 Respostas
- 2959 Exibições
- Última mensagem por camila_braz

Dom Jun 11, 2017 11:42
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites que tendem ao infinito com raízes
por Mell » Qua Mai 01, 2013 15:21
- 3 Respostas
- 2723 Exibições
- Última mensagem por e8group

Sáb Mai 04, 2013 02:41
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Ajuda com limites no infinito e continuidade
por umbrorz » Dom Abr 15, 2012 00:54
- 3 Respostas
- 4563 Exibições
- Última mensagem por umbrorz

Seg Abr 16, 2012 11:46
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.