• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais

Integrais

Mensagempor pseytow » Qui Nov 27, 2008 21:54

existem duas integrais que estou tentando resolver faz algum tempo... infelizmente, sinto que nao estou perto.
se puderem me ajudar, aqui estão:
\int_{}^{}\frac{\left(x+1 \right)}{\sqrt[2]{x}-1}

\int_{}^{}\frac{\left(1-\sqrt[2]{x} \right)}{1+\sqrt[2]{x}}
(tem que ser feitas por substituição)
tranco logo no início:
u=\sqrt[2]{x}-1

\int_{}^{}\frac{x+1}{2u\sqrt[2]{x}}
nao consigo eliminar o x para poder integrar!
se puderem me indicar o caminho...
obrigado,
pseytow
pseytow
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 02, 2008 12:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Econômicas
Andamento: cursando

Re: Integrais

Mensagempor Adriano Tavares » Qui Mar 10, 2011 01:52

Olá,pseytow.

\int \frac{(x+1)}{\sqrt{x}-1}dx

Fazendo-se x=y^2 teremos:

dx=2ydy

\int \frac{(x+1)}{\sqrt{x}+1}dx=\int \frac{(y^2+1)2y}{y-1}dy=2\int \frac{y^3+y}{y-1}dy=2\int \frac{y^3-1+y+1}{y-1}dy=

2\left[\int \frac{y^3-1}{y-1}dy+\int \frac{y+1}{y-1}dy\right]=2\left[\int \frac{(y-1)(y^2+y+1)}{(y-1)}dy+\int \frac{y+1}{y-1}dy\right]=

2\left[\int (y^2+y+1)dy+\int \frac{y}{y-1}dy +\int \frac{dy}{y-1}\right]=

Calculando essas integrais separadamente teremos:

\int (y^2+y+1)dy={ \frac{y^3}{3}+\frac{y^2}{2} +y+C_1+C_2+C_3

\int \frac{y}{y-1}dy =y-1+ln\mid y-1 \mid +C4

\int \frac{dy}{y-1}=ln \mid y-1 \mid +C_5

\int \frac{x+1}{\sqrt{x}-1}dx=2\left(\frac{y^3}{3}+\frac{y^2}{2}+2y-1+2ln \mid y-1 \mid +C_1+C_2+C_3+C_4+C_5 \right)

Fazendo-se C_1+C_2+C_3+C_4+C_5=C e substituindo o valor de y teremos:

\int \frac{x+1}{\sqrt{x}-1}dx=2\left(\frac{x\sqrt{x}}{3}+\frac{x}{2}+2\sqrt{x}-1+2ln\mid \sqrt{x} -1\mid+C \right))


\int \frac{1-\sqrt{x}}{1+\sqrt{x}}dx

Racionalizando \frac{1-\sqrt{x}}{1+\sqrt{x}} encontraremos \frac{1-2\sqrt{x}+x}{1-x}

\int \frac{1-\sqrt{x}}{1+\sqrt{x}}dx=\int \frac{x-2\sqrt{x}+1}{1-x}dx

Fazendo-se x=y^2 teremos:

dx=2ydy

\int \frac{x-2\sqrt{x}+1}{1-x}dx=\int \frac{2y(y^2-2y+1)}{1-y^2}dy=-2\int \frac{y(y-1)^2}{y^2-1}dy=

(-2)\int \frac{y(y-1)^2}{(y+1)(y-1)}dy=-2\int \frac{y(y-1)}{(y+1)}dy=-2\int \frac{y^2-y}{y+1}dy

Fazendo-se y+1=t teremos:

dy=dt

(-2)\int \frac{y^2-y}{y+1}dy=-2\int \frac{(t-1)^2-(t-1)}{t}dt=-2\int \frac{t^2-2t+1-t+1}{t}dt

(-2)\int \frac{t^2-3t+2}{t}dt=-2\int \left(t-3+\frac{2}{t}\right)dt =

(-2)\left(\int tdt-3\int dt +2\int \frac{dt}{t}\right)=-2\left(\frac{t^2}{2}-3t+2ln\mid t \mid +C_1+C_2+C_3\right)

Sendo y=t-1 e y=\sqrt{x} tem-se que t=\sqrt{x}+1

C_1+C_2+C_3=C

Substituindo o valor de t teremos:

\int \frac{1-\sqrt{x}}{1+\sqrt{x}}dx=-2\left(\frac{(\sqrt{x}+1)^2}{2}-3(\sqrt{x}+1)+2ln \mid \sqrt{x}+1 \mid +C \right)
Adriano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Mar 07, 2011 16:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo em automação industrial
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.