por -civil- » Qui Mai 26, 2011 02:37
Preciso calcular esse limite pela definição:

em p = 1
Eu desenvolvi e cheguei até isso:

= ... =

Eu imagino que eu preciso cancelar alguma coisa nesse limite para não dar indefinição, mas eu não consigo pensar em nenhuma forma de fazer isso.
-
-civil-
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Sex Abr 22, 2011 12:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por demolot » Qui Mai 26, 2011 07:10
se separares ficas:
![\frac{\sqrt[]{2x+1}}{x}-\frac{1}{x} \frac{\sqrt[]{2x+1}}{x}-\frac{1}{x}](/latexrender/pictures/847eea802f855cd412ebc8940c83f153.png)
aplicado o limite vais ter
1/0 - 1/0 = 00 - 00
-
demolot
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Sáb Dez 11, 2010 14:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Informatica
- Andamento: cursando
por -civil- » Qui Mai 26, 2011 09:48
Percebi que quando escrevi aqui acabei colocando p=1 em vez de p=0. De qualquer forma, eu utilizei nos cálculos p=0 e fazendo o que você mostrou, meu resultado vai ser 0. Só que o gabarito (7.17 - 1 (b) do Guidorizzi) mostra que a solução é 1.
-
-civil-
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Sex Abr 22, 2011 12:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por FilipeCaceres » Qui Mai 26, 2011 10:45
Não seria isto??

-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Claudin » Qui Mai 26, 2011 11:14
Eu calcularia do mesmo modo que o Felipe calculou!
Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Qui Mai 26, 2011 13:31
-civil- escreveu:Preciso calcular esse limite pela definição:

em p = 1
-civil- escreveu:Percebi que quando escrevi aqui acabei colocando p=1 em vez de p=0.
(...)
Só que o gabarito (7.17 - 1 (b) do Guidorizzi) mostra que a solução é 1.
Por favor, tenha mais atenção ao enviar o exercício.
Na verdade o texto que consta nessa seção do Guidorizzi é:
1. Calcule, pela definição, a derivada da função dada, no ponto dado.
(...)
b)

em p = 0.
Em resumo: o exercício solicita que seja calculada a
derivada pela definição e não o
limite pela definição como você escreveu em sua primeira mensagem.
Agora, vejamos o exercício correto.
Aplicando a definição de derivada, temos que:

.
Agora, para continuar o exercício você precisa multiplicar tanto o numerador quanto o denominador por

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Duvida num limite pela definição
por TheoFerraz » Qua Abr 13, 2011 19:52
- 5 Respostas
- 3851 Exibições
- Última mensagem por LuizAquino

Sex Mar 30, 2012 00:52
Cálculo: Limites, Derivadas e Integrais
-
- Derivada pela definição de limite
por SheylaTamarossi » Dom Jun 12, 2011 11:27
- 6 Respostas
- 8132 Exibições
- Última mensagem por Fabio Cabral

Seg Jun 13, 2011 12:07
Cálculo: Limites, Derivadas e Integrais
-
- Derivada pela definição de limite
por Andreyan » Ter Jul 12, 2011 17:55
- 4 Respostas
- 2653 Exibições
- Última mensagem por LuizAquino

Qua Jul 13, 2011 15:27
Cálculo: Limites, Derivadas e Integrais
-
- [limite] Demonstrando um limite pela definição
por lucasvier4 » Qui Abr 16, 2015 22:46
- 1 Respostas
- 1441 Exibições
- Última mensagem por adauto martins

Sáb Abr 18, 2015 12:25
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Dúvida sobre provar pela definição
por Icaro1931 » Qui Mai 23, 2013 22:14
- 1 Respostas
- 1398 Exibições
- Última mensagem por e8group

Sex Mai 24, 2013 08:59
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.