• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida limite indeterminado

Duvida limite indeterminado

Mensagempor ewald » Seg Mai 09, 2011 17:20

Oi tenho essa duvida,, ja tentei de todas as formas que eu imaginei, ja vi aulas no youtube etc. O problema dessa é que tem uma raiz cubica. Eu consigo resolver de raiz quadrada, raiz quarta ... mais de impares eu me confundo. Alguem pode por favor resolver pra mim. *-)

\lim_{x\rightarrow 0} \frac{{(1+2x)}^{1/3}-1}{x}
ewald
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Qui Mai 05, 2011 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrica
Andamento: cursando

Re: Duvida limite indeterminado

Mensagempor LuizAquino » Seg Mai 09, 2011 20:01

Como sempre, é uma questão de usar produtos notáveis.

Sabemos que:
a^3 - b^3 = (a - b)\left(a^2 + ab + b^2\right).

Desse modo, você precisa multiplicar o numerador e o denominador por:
\left(\sqrt[3]{(1+2x)^2} + \sqrt[3]{1+2x} + 1\right)

Note que fazendo isso você fará com que no numerador apareça o produto notável desejado:
\left(\sqrt[3]{1+2x} - 1\right)\left(\sqrt[3]{(1+2x)^2} + \sqrt[3]{1+2x} + 1\right) = \left(\sqrt[3]{1+2x}\right)^3 - 1^3 = 2x

Podemos também usar outra estratégia. Façamos a substituição de variáveis: u = \sqrt[3]{1+2x}. Teremos que quando x tende para 0, u tenderá para 1. Além disso, temos que x = \frac{u^3-1}{2}. Desse modo, o limite original é equivalente a:

\lim_{u\to 1} \frac{2(u - 1)}{u^3 - 1} .

Note que de novo você usará o produto notável indicado anteriormente.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}